

Missile Seeker Common Computer Signal Processing Architecture for Rapid Technology Upgrade^{*}

Daniel V. Rabinkin, Edward M. Rutledge, and Paul Monticciolo

Embedded Digital Systems Group September 26, 2002

MIT Lincoln Laboratory, 244 Wood Street Lexington, MA 02420

* This work is sponsored by the United States Navy Standard Missile Program PMS-422. Work performed by MIT Lincoln Laboratory is covered under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force or the United States Navy.

- Introduction
- Signal Processor Architecture
 - Hardware
 - Software
- System Implementation and Demonstration
- Summary

STANDARD Missile/Project Hercules/THAAD Signal Processor Upgrade Program

- Introduction
- Signal Processor Architecture
 - Hardware
 - Software
- System Implementation and Demonstration
- Summary

Signal Processing Architecture Example: Basis for Benchmarking

Near-Term Processing requirements met by COTS quad G4 board

Processor Technology Overview 3Q '02

Processor	Clock	MFLOPS	Avg.	Cache Memory			Ext. Bus	Prog.	Typical
	(MHz)	(Peak) Power (Watts	Power (Watts)	L1 (onboard)	L2	L3	Mbytes/S @MHz	Effort	Operating Efficiency
Itanium2 (GPP)	1000	~8,000	100	32KB	256KB	3MB (onboard)	6400@400	Low	Low
MPC7455 (GPP)	1000	7,000	21.3	32KB Ins 32KB dat	256KB (onboard)	2MB (offboard)	1064@133	Low	Medium
MPC7451 (GPP)	667	5,336	14.5	32KB Ins 32KB dat	256KB (onboard)	2MB (offboard)	1064@133	Low	Medium
MPC7410 (GPP)	500	4,000	5.3	32KB Ins 32KB dat	2MB (offboard)		1064@133	Low	Medium
TMS320C67 13 (DSP)	225	1,350	1.2	4KB Ins 4KB dat	64MB (onboard)	192KB (offboard)	900@255	Med.	High
Virtex II-Pro (FPGA)	300	~30,000 (MOPS)	~1		1.25MB (onboard)		High	High	Very High

• Development cost tied to OS, library, and tool support

- Architecture track record must be considered for upgrade cost projections
- Memory and communication bandwidth usually set limit on GPP and DSP performance
 Large cache and good cache hierarchy needed to achieve opcount potential
- PowerPC architecture is best compromise for high performance/easy development
 - Many PowerPC COTS multiprocessor signal processing platforms available today

DY4 COTS-Based G4-Based Processor Architecture & Board

Principal Attributes

- Application scalable
- Uses industry-standard programmable processor and bus
- Excellent performance-topower ratio
- Commercially available development tools
- COTS board manufacturers will form-factor board to specification

exploit parallel processing

Outline

- Introduction
- Signal Processor Architecture
 - Hardware
 - Software
- System Implementation and Demonstration
- Summary

Software Support for Lifecycle Maintainability

- Moore's Law means commercial processor hardware will change several times within the system lifetime
- Application software has traditionally been tied to the hardware
 Significant recoding required to migrate to new hardware
- Many acquisition programs are developing stove-piped middleware "standards"
- Open software standards provides portability, performance, and productivity benefits

Extending the Standards-Based Approach to Parallel Processing: PVL

Scalable Code Development

Scalable code requires very limited changes as number of processor changes
Important in development phases: don't work on entire processor system

Rapid Prototyping Development Model

Development model verifies one aspect of the system at a time

Outline

- Introduction
- Signal Processor Architecture
 - Hardware
 - Software
- System Implementation and Demonstration
- Summary

Productivity: PVL Code Size

		Matlab	PVL/C++	Matlab-to-C Compiler			
		LOC	LOC	LOC			
ADNUC		36	143	538			
Dither Sub.		28	160	437			
Integration		11	63	178			
CFAR		2	60	90			
Bulk Filter		5	152	211			
Total		82	578	1454			
	• P\	 PVL/C++ Code includes Signal processing code Task and data parallel code Embedded control code Matlab and Converted C code includes only Signal processing code 					
Estimate LOC for an embedded, parallel C program = 1500 * Expansion factor ¹ » 1500*2 P 3000 ¹ Expansion Factor = 2-3 based on previous projects							

Porting PVL to the Quad G4 Board

Network of Workstations

Quad G4 Embedded System

Hardware

Required Throughput: 60 frames/sec Required Latency: ~1/60 sec = 16.7 msec

Current Status of Signal Processing Architecture: SM3

Front-End Video Processing

Back-end Processing

999999-19 XYZ 10/3/02

- Introduction
- Signal Processor Architecture
 - Hardware
 - Software
- System Implementation and Demonstration
- Summary

- Next generation missile seeker processor development methodology under development
- COTS-based Development hardware platforms has been selected & assembled
- Layered, standards-based, software approach for portable and easily upgradeable application code has been developed
- Real-time seeker processing demonstrations now operational
- Demonstrating advanced Project Hercules algorithm performance on RT platform
- Future work:
 - Demonstrate operation with sensor testbed
 - Continue development and porting of back-end and advanced algorithms to RT platform