

Session 3:

Compiler and Library Technologies

Joe Germann / Sky Computers

Compiler and Library Technology Themes

- ☐ Compilers and their associated Libraries have made Significant Performance Enabling Advances in addressing the Complexities of Algorithm Mapping to Processor Architectures
- ☐ Historically the Solutions were addressed with:
 - 1980's The <u>Brute Force</u> Times: Fortran and Assembly Code, Macro Preprocessors, Simple Code Translators, and FPS Libraries; many of which required Assembly Code interventions to get Performance
 - Most Application were on uniprocessors and used Fortran and Assembly Code
 - 1990's <u>Smart Tools</u> Emerge onto the HPEC scene: Uniprocessor Vectorizers, Small Cluster Parallelizers, Memory Hierarchy Management, Performance Profiling, and Optimization Guiding Tools such as Event Analyzers
 - Most Applications migrated to Multiprocessors and used Fortran or C and Assembly Code
 - 2000's <u>Opaque Software</u> and Highly Specialized Hardware: Object Oriented Languages,
 Opaque Vector Libraries, Generalized Communication API's, Class Templates, SIMD
 Processor Architectures, and Application Specific ASICS and FPGA's.
 - Most Applications will be on Multiprocessors and will use C. C++, and possibly some JAVA

Compiler and Library Technology Challenges

- □ The Efficient Algorithm Mapping and Performance Optimizations to Differing Solution Architectures (Microprocessors, FPGA's, Interconnect Fabrics, High Availability Hardware)
- ☐ The Special Role and Relationship between Algorithm Processing and Interprocessor Communications in Large-Scale HPEC Applications
- ☐ The Ability for Reusable Software (I.e., C, C++, VSIPL, MPI) to be Optimized for Maximum Efficiency with Minimal Effort; preferably Completely Transparent to the Developer
 - All the While Exploiting the Maximum Potential of:
 - The Processor's Architecture and it's Utilization of Memory and I/O
 - The Interconnect Fabrics Performance and Reliability Characteristics
 - While insuring Application Performance, Reliability, and Survivability

Session 3: 09:15

- ☐ Short Vector SIMD Code Generation for DSP Algorithms
 - Markus Pueschel / Carnegie Melon University
 - Franz Franchetti / Technical University of Vienna
 - Jose Moura / Carnegie Melon University
 - Christopher Ueberhuber / Technical University of Vienna
- □ The advent of multiple SIMD instruction sets (Intel's SSE/SSE2, AMD's 3DNow, and Motorola's Altivec) necessitate close cooperation between Algorithm Knowledge and SIMD Instruction choices.
- ☐ The application of a SPIRAL algorithm definition front end has shown good performance gains when implemented using Advanced Compiler Techniques

Session 3: 09:45

- ☐ SC2 C to FPGA Compiler
 - Maya Gokhale / Los Alamos National Laboratory
 - Jan Stone / Stone Ergonaut
 - Jan Frigo / Los Alamos National Laboratory
 - Christine Ahrens / Los Alamos National Laboratory
- ☐ This paper looks at the Streams-C Language and Compiler optimizations as targeted for use with the Xilinx/Virtex technology.
- ☐ The work presented focuses on stream-oriented computing to include high-data-rate flow and compute intensive operations usually at low precision fixed-point arithmetic operations
- The efficiency of implementation between Streams-C and other approaches (manual hardware and software) will be presented

Session 3: 10:30

- Monolithic Compiler Experiments using C++ Expression Templates
 - Lenore Mullin / MIT Lincoln Laboratory
 - Edward Rutledge / MIT Lincoln Laboratory
 - Robert Bond / MIT Lincoln Laboratory
- □ This paper focuses on compiler optimizations for indexing operations that are implemented utilizing C++ Expression Templates
- Comparisons are made between Hand Coded Optimizations and and Optimizations utilizing an Enhanced Portable Expression Template Engine

Session 3: 11:00

- ☐ Streaming and Dynamic Compilers for High Performance Embedded Computing
 - Peter Mattson / Reservoir Labs. Inc.
 - Jonathan Springer / Reservoir Labs. Inc.
 - Charles Garrett / Reservoir Labs. Inc.
 - Richard Lethin / Reservoir Labs. Inc.
- Two Trends are Driving Next-Generation HPEC:
 - 1) Multiple Processing Units on a Single Chip, and
 - 2) Explicit Data Transfers between Processing Elements and/or Memory
- This paper addressing the role of Stream Data Processing utilizing Streaming Languages, Streaming Compilers, and Dynamic Compilers