
© 2002 Mercury Computer Systems, Inc.

������������	

���
��������	�����	
������	��	����	�	���
	

�����������
�
�
�������
���

������������	

���
��������	�����	
������	��	����	�	���
	

�����������
�
�
�������
���

John Bloomfield, Mercury Computer Systems, Inc.
HPEC – September 2002

2© 2002 Mercury Computer Systems, Inc.

AgendaAgenda

� Why worry about partitioning?
� How we partitioned a real-world

problem and the benefits we got.
� Generalization of partitioning

concepts and factors.
� Concluding remarks.

3© 2002 Mercury Computer Systems, Inc.

Why Partition?Why Partition?
� You are developing an embedded system

� Constrained by performance, size, weight, cost, & power
� You can’t meet the constraints with RISC processors only
� But FPGAs can outperform RISC processors by a factor

of 10 or more on some tasks

� Therefore, you require a heterogeneous
system

FPGA or
I/O

node

FPGA or
PPC/G4

nodeSensor Data

SWITCH FABRIC

FPGA or
I/O

node
Sensor Data

FPGA or
PPC/G4

node

FPGA or
PPC/G4

node

...
...

...

...

...

� This inevitably leads to the question
� “How do I partition my computational tasks between all

the heterogeneous processors I have at my disposal?”

4© 2002 Mercury Computer Systems, Inc.

Real-World ExampleReal-World Example
� We selected a problem that was difficult to solve

efficiently with a G4 PowerPC:

� We took that 3-D volume reconstruction problem
and partitioned it between RISC and FPGA nodes.

� We then implemented it, demonstrated it, and
reported the results.

������	� !�

���"������	�����
������	� !�

#��
��	���$������

5© 2002 Mercury Computer Systems, Inc.

The Problem TasksThe Problem Tasks

4.5
BOP

Shepp-Logan Filter Interpolated Decimation

0.13
BOP

8

256
)z,y,x(P

Int

)z,y,x(P

1x2

x2

1y2

y2

1z2

z2

in

out

∑ ∑∑
+ + +








=

Cone Beam
Back Projection

400 BOP
5123

x
16 bit

Volume
Image

2563

x
8 bit

Volume
Image

5122

x
300

Frames
x

16 bit

5122

x
300

Frames
x

16 bit
Input

Projecton
Data

[] []∑ ⋅=
β

ββββ),,(),,,(),,,(,, yxwyxvyxuPzyxI

150K
512 point

real in, real out
fast convolutions

ββ sincos yxS += ββ cossin yxT +−=

()
2









−

=
SSOD

SOD
w

I = 3-Dimensional output image array with x, y, and z-axes
P = 2-Dimensional filtered projection data with u and v axes at all projection angles (β)
β = Projection angle
S = Projected image voxel location onto the s-axis
T = Projected image voxel location onto the t-axis
w = Weighting factor based on source distance to image voxel location
SID = Source-to-image (detector) distance
SOD = Source-to-object (center of rotation) distance
U = u-axis value for the P data for a given voxel location and projection angle
V = v-axis value for the P data for a given voxel location and projection angle

()SSOD

SIDT
U

−
= *

()SSOD

SIDz
V

−
= *

6© 2002 Mercury Computer Systems, Inc.

Pick the Biggest Target FirstPick the Biggest Target First
� Cone Beam Back Projection – 400 G Operations

� Existing optimized PPC code does 250 MFLOPS, compared with
the peak 3.2 GFLOPS for a G4 @ 400 MHz.

• This big difference tells us this may be a great target for FPGAs
• Why such a difference?

– The dataset is too large to fit in cache
– The same data must be brought into cache repeatedly to have it in an order

that keeps the processor running as efficiently as it can

� Can an FPGA do better?
• We undertook an iterative algorithm analysis
• We determined back projection can be intergerized

– Greatly improves the ops FPGAs can do

• We envisioned a candidate architecture that looked promising
– A pipeline that organizes the “inner loop” so that repetitive fetching of data

from external memory into the FPGA is minimized
– Estimated performance on our FPGA compute node
– Recognized that architecture scales inter FPGA and intra FPGA

� Ultimately the FPGA architecture ran at 13 GOPS on a 3M gate
FPGA compared with the peak 38 GOPS for 16 bit integers that
we might expect from such an FPGA.

• An excellent utilization factor
• We kept the FPGA busy 100% of the time

7© 2002 Mercury Computer Systems, Inc.

Shepp-Logan & DecimationShepp-Logan & Decimation

� Shepp-Logan Filter –
4.5B Ops
� Existing optimized PPC code

• Runs at 980 MFLOPS
compared with the peak 3.2
GFLOPS for a G4 @ 400 MHz

• 512 point real 1-D fast
convolution on 150K lines

• Not I/O limited
• Runs well on PPC

� FPGA implementation
• More ops to directly do

convolution
• Or FP to do fast convolution
• Best ops/gate design utilizes

a high % of gates but is
utilized a low % of the time

� Less than 2% of total ops
� Conclusion: run Shepp-

Logan filter on PPC

� Interpolated Decimation –
0.13B Ops
� PPC implementation

• About one op per input voxel
• Single PPC will be I/O limited,

but still faster than other tasks
• Convenient for output data to

go through a PPC
• Volatile code driving display is

easy to change on a PPC
� FPGA implementation

• Could be added to output of
back project task

• Creates more fabric traffic
because the undecimated
volume must also be output

• Harder to change code
� Less than 0.1% of total ops
� Conclusion: run interpolated

decimation on PPC

8© 2002 Mercury Computer Systems, Inc.

System Improvements System Improvements

� Estimated value based on optimized AltiVec G4 implementation
� Measured value

�����	�%���� &���	���"���	'��%

(������)�$	��	�*	���%	���
����

� Significant system performance improvements
� Additional performance/watt gains
� Specific target algorithm gains higher

32.0

20.9

1.0

System
Performance

per Watt

24.4

26.0

1.0

BackProject
Performance
per Volume

15.4�

28.9�

60.0�

Render
Times

3.9

2.1

1.0

Performance

16.9

13.5

1.0

System
Performance
per Volume

83.912

89.411

1.0130

BackProject
Performance

per Watt

VantageRT
7400

Boards

AP-1
Boards

32.0

20.9

1.0

System
Performance

per Watt

24.4

26.0

1.0

BackProject
Performance
per Volume

15.4�

28.9�

60.0�

Render
Times

3.9

2.1

1.0

Performance

16.9

13.5

1.0

System
Performance
per Volume

83.912

89.411

1.0130

BackProject
Performance

per Watt

VantageRT
7400

Boards

AP-1
Boards

�������

���	�
���

���

�����������
����

9© 2002 Mercury Computer Systems, Inc.

General Factors to ConsiderGeneral Factors to Consider

� These
interrelated
factors must be
considered and
balanced when
partitioning a
problem

Data
Precision

Decomposition

I/O

Programming
Ease

Memory
Hierarchy

Utilization

Raw
Performance

Architecture

Problem
Factors

Processor
Factors

10© 2002 Mercury Computer Systems, Inc.

Processor Raw PerformanceProcessor Raw Performance

� Performance may be
measured in
� Operations per second
� Operations per watt
� Operations per cubic foot
� Operations per pound
� Operations per dollar

� There is not a clear winner
� Each has different plusses and

minuses for each different task

� FPGA raw performance
first order rule of thumb
� 40 to 80% of the hardwired

multipliers can be used
• Interesting FPGAs today have 80 to

400 18 x 18 multipliers that can
operate at 100 to 200 MHz

� There are enough resources around
the multipliers to implement the
additions, control logic, and so on
that the particular task also requires

� PPC with AltiVec raw performance
first order rule of thumb
� For 32-bit floats, the vector unit can

retire 4 multiplies and 4 additions per
500 to 1000 MHz clock

� For 16-bit integers, the vector unit can
retire 8 multiplies and 8 additions per
500 to 1000 MHz clock

� Depending on the vectorizability of the
code, 10% to 80% of this number may
be achievable

Performance as a Function of Task*

A B C D E F G H

TASK

P
E

R
F

O
R

M
A

N
C

E

FPGA
RISC

*Fabricated data to illustrate a concept

11© 2002 Mercury Computer Systems, Inc.

Fast Convolution on G4 and FPGA

Convolution Size

T
h

ro
u

g
h

p
u

t
(G

F
L

O
P

S
 o

r
G

O
P

S
)

1GHz G4 Apollo
Race++ IO Limit

Parallel RapidIO IO Limit
3M Gate V2Pro @ 200 MHz

Raw Performance ExampleRaw Performance Example
Notes:
� FPGA and G4 performance

are representative of
anticipated future Mercury
products.

� These are well informed
estimates that do include
concurrent I/O.

� G4 performance falls off
dramatically above a
threshold because the
problem no longer fits in
on chip memory.

� FPGA performance does
not fall off because the
external memory system
is fast enough to take over
when the problem no
longer fits in on chip
memory.

� This is one particular
architecture to implement
FFTs in FPGAs.

� G4 implementation is
32-bit FP.

� FPGA implementation is
32- bit FP I/O with a 27-bit
integer minimum internal
resolution.

12© 2002 Mercury Computer Systems, Inc.

FPGA
� On Die SRAM

� Interesting FPGAs today have
80-400 2 KB RAMs @ ~0.8GB/sec
Total: 160-800 KB @ 64-320 GB/sec

� External SRAM & DRAM
� Many choices supported by FPGA

supplier, fixed by node design
� Fixed number of pins available limits

total external memory bandwidth
• Max BW: ~12GB/sec
• SRAM: ~6 banks @ 2MB each
• Or DRAM: ~6 banks @ 32MB each

� Max Storage: constrained only by
real-estate and choice of memory

• BW will suffer as a result of a larger
external memory system

� Memory hierarchy will affect the performance of most tasks
� PPC has a fixed general-purpose hierarchy that works well for many tasks
� FPGA has a malleable memory hierarchy that may be formed to suit the task

• Much of the FPGA memory hierarchy is not fixed until the application code is written
� Total memory on a processor node affects how a problem can be decomposed

Processor Memory HierarchyProcessor Memory Hierarchy

PowerPC
� On Die L1

� 32/32KB I/D @ 23GB/sec

� On Die L2
� 256-512KB @ 32GB/sec

� External L3
� Limited choices offered by

processor supplier, fixed by node
design

� 0 1 or 2 MB @ 4GB/sec

� SDRAM
� Max bandwidth set by processor

supplier, constrained by “compute
node ASIC,” fixed by node design

� 0.25-4GB @ 1GB/sec

13© 2002 Mercury Computer Systems, Inc.

Processor I/OProcessor I/O
� I/O per operation rather than raw

number of operations can constrain
performance.

� RISC processors generally perform I/O
functions through their bus or fabric
connection.
� Fixed by processor supplier, or node design
� 0.26, 1.2, & 2 GB/sec are points for PPCs

� FPGA processors have better raw I/O
capability.
� Fixed by node design
� Multiple fabric connections to one FPGA are

possible
� I/O external to system may connect directly to

FPGA
� 4 – 8 GB/sec I/O available on today’s FPGAs

� When converting a task to FPGA
execution provides no benefit because
it becomes I/O bound, try changing the
decomposition of the problem to
combine multiple tasks in one FPGA,
thereby reducing the I/O per op.

A

A

B

B

C

C

D

D

A

A

B

B

C

C

D

D

A

A

B,C

B,C

D

D

Data Re-Org

Combine Two I/O
Bound Tasks

��������)���
��	$�	����	����	��
�+',-�
�$	����������

14© 2002 Mercury Computer Systems, Inc.

Processor Programming EaseProcessor Programming Ease

� RISC processor tool set is mature
� Ease of code development, debug, and modification is

excellent (relatively speaking)

� Reconfigurable FPGA processor tool set is
evolving
� FPGA architectures themselves do not have the stability and

depth of academic understanding that RISC architectures do
� FPGA programming has many more degrees of freedom than

RISC programming
� For these reasons, development for FPGAs takes many times

the effort to develop for RISCs

� This state of affairs leads us to conclude
� If FPGA and RISC performance for a task are a similar order of

magnitude, then choose RISC
� If the task is a small portion of the overall computing problem

such that reducing it will not make a significant system
improvement, then choose RISC

� If task is volatile, in other words the algorithm is not well
defined or in flux, then choose RISC

15© 2002 Mercury Computer Systems, Inc.

Processor UtilizationProcessor Utilization
FPGA

� To maximize FPGA utilization
� Must program a large portion of the “gates” on an FPGA
� Must keep all those programmed “gates” working a large portion of the time

� FPGA can be reprogrammed or “context switched” but
� The whole FPGA goes off-line and looses state during reconfiguration which

takes 10s of ms
• FPGAs some time in the future may work to address these limitations

� If you context switch often utilization goes down
• Try to hide FPGA reconfiguration time in human reaction time

� By adding generalizations to FPGA application code utilization
can be improved
� E.G. Write a convolution with settable coefficients instead of fixed ones
� But, generalization costs gates

RISC
� To maximize RISC utilization

� Just have to keep it fed with data like any other processor

� RISC can context switch well
� In 10s of uSec and keep its state
� Plenty of instructions for different tasks can be kept in memory

16© 2002 Mercury Computer Systems, Inc.

Processor ArchitectureProcessor Architecture
� RISC processor architecture is fixed by processor supplier

� We all become experts at this architecture
� We understand it quantitatively and know how it will respond to changes

� On an FPGA a new processing architecture may be invented
for each task
� Architecture may be designed to optimize performance on a task
� Architecture may be set by choice of an “FPGA middleware” or a high-

level FPGA programming tool
� My favorite architecture is the streaming dataflow with samples being

clocked at the natural clock rate of the FPGA
• For example, this 7-point symmetrical convolution:

x
+

+
x

+
x

x

+

+

+
Streaming

Fabric
Interface

Streaming
Fabric
Interface

~4% of a 3M Gate FPGA
(excluding fabric interface)
16 bit samples @ 100MHZ
total performance 1GOP

17© 2002 Mercury Computer Systems, Inc.

Problem DecompositionProblem Decomposition

� Big problems require multiple processors
� There are many different ways to break up problems into tasks for distribution

across a homogeneous or heterogeneous set of processors
� A good partition will optimize system performance

� Consider radar data, it can be organized by channel, range, or pulse
� It may need to be re-organized a number of times in a problem
� But how can we minimize the re-orging or corner turning?
� Without enough processing between re-orgs on the fabric, an FPGA may be I/O

bound and leave performance on the table

� Does the problem have a data funnel on the front end?
� Is the problem amenable to sensor data being sent directly to FPGA nodes, and

processed to the point of a data reduction?
� If this can be achieved it keeps the voluminous sensor data off the fabric
� Even without a reduction, there is one less transit of the data across the fabric

� Is there a choke point in the problem when implemented entirely with
RISC processors?
� A single task that is inefficient on RISC, or is just a huge number of ops
� Can a strategic deployment of FPGA nodes on such a task fix the dataflow, and/or

reduce the node count?

18© 2002 Mercury Computer Systems, Inc.

Problem Data PrecisionProblem Data Precision
� RISC Processors have a set of supported data types

� PowerPC with AltiVec can vectorize 32-bit float, and 32-, 16-, and 8-bit ints
• Because AltiVec performance is the same for 32-bit floats and ints, we use

floats for everything

� Using floats for everything has become the de facto standard because it
makes development easier by minimizing the worries about precision

� FPGAs can implement any data type
� 18 x 18 bit hardwired multipliers and RAMs in 9-, 18-, and 36-bit widths do

favor some data types
� Integer implementations can and should scale the bit precision as needed

by each particular portion of an algorithm
• Minimizing the bit precision of integer processing will maximize the number

of ops and operating frequency that can be achieved

� Floating-point implementations are possible
• They use more resources per op
• Many FP resources are coming on line, including an IEEE standards effort
• FP on FPGAs is not bound to 32- and 64-bit types, any size of FP is possible

� Bottom line for data precision on FPGAs
• Engineering the data precision will maximize performance, but costs

development effort to manage that precision
• Some portion of a task that requires FP does not require a trip to the fabric
• Brute force FP on FPGAs can be done, but performance will be reduced

19© 2002 Mercury Computer Systems, Inc.

Future TrendsFuture Trends

� Each aspect of the heterogeneous multicomputer
is scaling at different rates
� What you know today as a balanced system will not be in the

future
� RISC processors performance scales bumpily along tracking

Moore’s law
� FPGA gate capacity scales with Moore’s law, but the operating

frequency is also doubling every three years

� FPGAs will get chunkier
� Memory chunks have been in FPGAs for a while
� Hardwired multiplier chunks are a recent FPGA feature
� PPC 405 RISC processor chunks are here now

• This leads to another set of issues

� You can expect more DSP chunks

20© 2002 Mercury Computer Systems, Inc.

Final ThoughtsFinal Thoughts

� All factors are
interrelated
� Push on one, and often

another one pops out

� Identify the largest
computational tasks
to attack first

� This is the same
systems
engineering
problem you
already know how
to solve

Data
Precision

Decomposition

I/O

Programming
Ease

Memory
Hierarchy

Utilization

Raw
Performance

Architecture

