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AgendaAgenda

� Why worry about partitioning?
� How we partitioned a real-world 

problem and the benefits we got.
� Generalization of partitioning 

concepts and factors.
� Concluding remarks.
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Why Partition?Why Partition?
� You are developing an embedded system 

� Constrained by performance, size, weight, cost, & power
� You can’t meet the constraints with RISC processors only
� But FPGAs can outperform RISC processors by a factor 

of 10 or more on some tasks

� Therefore, you require a heterogeneous 
system
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node
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node
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node

...
...

...
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� This inevitably leads to the question
� “How do I partition my computational tasks between all 

the heterogeneous processors I have at my disposal?”
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Real-World ExampleReal-World Example
� We selected a problem that was difficult to solve 

efficiently with a G4 PowerPC:

� We took that 3-D volume reconstruction problem 
and partitioned it between RISC and FPGA nodes.

� We then implemented it, demonstrated it, and 
reported the results.
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The Problem TasksThe Problem Tasks
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I = 3-Dimensional output image array with x, y, and z-axes
P = 2-Dimensional filtered projection data with u and v axes at all projection angles (β)
β = Projection angle
S = Projected image voxel location onto the s-axis
T = Projected image voxel location onto the t-axis
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Pick the Biggest Target FirstPick the Biggest Target First
� Cone Beam Back Projection – 400 G Operations

� Existing optimized PPC code does 250 MFLOPS, compared with 
the peak 3.2 GFLOPS for a G4 @ 400 MHz. 

• This big difference tells us this may be a great target for FPGAs
• Why such a difference?

– The dataset is too large to fit in cache
– The same data must be brought into cache repeatedly to have it in an order 

that keeps the processor running as efficiently as it can 

� Can an FPGA do better?
• We undertook an iterative algorithm analysis
• We determined back projection can be intergerized

– Greatly improves the ops FPGAs can do

• We envisioned a candidate architecture that looked promising
– A pipeline that organizes the “inner loop” so that repetitive fetching of data 

from external memory into the FPGA is minimized
– Estimated performance on our FPGA compute node
– Recognized that architecture scales inter FPGA and intra FPGA 

� Ultimately the FPGA architecture ran at 13 GOPS on a 3M gate 
FPGA compared with the peak 38 GOPS for 16 bit integers that 
we might expect from such an FPGA.

• An excellent utilization factor
• We kept the FPGA busy 100% of the time  
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Shepp-Logan & DecimationShepp-Logan & Decimation

� Shepp-Logan Filter –
4.5B Ops
� Existing optimized PPC code 

• Runs at 980 MFLOPS 
compared with the peak 3.2 
GFLOPS for a G4 @ 400 MHz 

• 512 point real 1-D fast 
convolution on 150K lines

• Not I/O limited
• Runs well on PPC

� FPGA implementation
• More ops to directly do 

convolution
• Or FP to do fast convolution
• Best ops/gate design utilizes 

a high % of gates but is 
utilized a low % of the time 

� Less than 2% of total ops
� Conclusion: run Shepp-

Logan filter on PPC

� Interpolated Decimation –
0.13B Ops
� PPC implementation

• About one op per input voxel
• Single PPC will be I/O limited, 

but still faster than other tasks
• Convenient for output data to 

go through a PPC
• Volatile code driving display is 

easy to change on a PPC
� FPGA implementation

• Could be added to output of 
back project task

• Creates more fabric traffic 
because the undecimated 
volume must also be output

• Harder to change code
� Less than 0.1% of total ops
� Conclusion: run interpolated 

decimation on PPC
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System Improvements System Improvements 

� Estimated value based on optimized AltiVec G4 implementation
� Measured value
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� Significant system performance improvements
� Additional performance/watt gains
� Specific target algorithm gains higher
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General Factors to ConsiderGeneral Factors to Consider

� These 
interrelated 
factors must be 
considered and 
balanced when 
partitioning a 
problem 

Data
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I/O

Programming
Ease

Memory
Hierarchy

Utilization

Raw
Performance

Architecture

Problem
Factors

Processor
Factors
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Processor Raw PerformanceProcessor Raw Performance

� Performance may be
measured in
� Operations per second
� Operations per watt
� Operations per cubic foot
� Operations per pound
� Operations per dollar

� There is not a clear winner
� Each has different plusses and 

minuses for each different task

� FPGA raw performance
first order rule of thumb
� 40 to 80% of the hardwired 

multipliers can be used
• Interesting FPGAs today have 80 to 

400 18 x 18 multipliers that can 
operate at 100 to 200 MHz

� There are enough resources around 
the multipliers to implement the 
additions, control logic, and so on 
that the particular task also requires

� PPC with AltiVec raw performance 
first order rule of thumb
� For 32-bit floats, the vector unit can 

retire 4 multiplies and 4 additions per 
500 to 1000 MHz clock

� For 16-bit integers, the vector unit can 
retire 8 multiplies and 8 additions per 
500 to 1000 MHz clock

� Depending on the vectorizability of the 
code, 10% to 80% of this number may 
be achievable  

Performance as a Function of Task*
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*Fabricated data to illustrate a concept
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Fast Convolution on G4 and FPGA

Convolution Size
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Raw Performance ExampleRaw Performance Example
Notes:
� FPGA and G4 performance 

are representative of 
anticipated future Mercury 
products.

� These are well informed 
estimates that do include 
concurrent I/O.

� G4 performance falls off 
dramatically above a 
threshold because the 
problem no longer fits in 
on chip memory.

� FPGA performance does 
not fall off because the 
external memory system
is fast enough to take over 
when the problem no 
longer fits in on chip 
memory.

� This is one particular 
architecture to implement 
FFTs in FPGAs.

� G4 implementation is
32-bit FP.

� FPGA implementation is 
32- bit FP I/O with a 27-bit 
integer minimum internal 
resolution.
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FPGA
� On Die SRAM

� Interesting FPGAs today have 
80-400 2 KB RAMs @ ~0.8GB/sec
Total: 160-800 KB @ 64-320 GB/sec

� External SRAM & DRAM
� Many choices supported by FPGA

supplier, fixed by node design
� Fixed number of pins available limits

total external memory bandwidth 
• Max BW: ~12GB/sec 
• SRAM: ~6 banks @ 2MB each
• Or DRAM: ~6 banks @ 32MB each

� Max Storage: constrained only by
real-estate and choice of memory

• BW will suffer as a result of a larger
external memory system

� Memory hierarchy will affect the performance of most tasks
� PPC has a fixed general-purpose hierarchy that works well for many tasks
� FPGA has a malleable memory hierarchy that may be formed to suit the task

• Much of the FPGA memory hierarchy is not fixed until the application code is written
� Total memory on a processor node affects how a problem can be decomposed

Processor Memory HierarchyProcessor Memory Hierarchy

PowerPC
� On Die L1

� 32/32KB I/D @ 23GB/sec

� On Die L2
� 256-512KB @ 32GB/sec

� External L3
� Limited choices offered by 

processor supplier, fixed by node 
design

� 0 1 or 2 MB @ 4GB/sec

� SDRAM
� Max bandwidth set by processor 

supplier, constrained by “compute 
node ASIC,” fixed by node design

� 0.25-4GB @ 1GB/sec    
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Processor I/OProcessor I/O
� I/O per operation rather than raw 

number of operations can constrain 
performance.

� RISC processors generally perform I/O 
functions through their bus or fabric 
connection.
� Fixed by processor supplier, or node design
� 0.26, 1.2, & 2 GB/sec are points for PPCs

� FPGA processors have better raw I/O 
capability.
� Fixed by node design
� Multiple fabric connections to one FPGA are 

possible
� I/O external to system may connect directly to 

FPGA
� 4 – 8 GB/sec I/O available on today’s FPGAs

� When converting a task to FPGA 
execution provides no benefit because 
it becomes I/O bound, try changing the 
decomposition of the problem to 
combine multiple tasks in one FPGA, 
thereby reducing the I/O per op. 
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Processor Programming EaseProcessor Programming Ease

� RISC processor tool set is mature
� Ease of code development, debug, and modification is 

excellent (relatively speaking)

� Reconfigurable FPGA processor tool set is 
evolving
� FPGA architectures themselves do not have the stability and 

depth of academic understanding that RISC architectures do
� FPGA programming has many more degrees of freedom than 

RISC programming 
� For these reasons, development for FPGAs takes many times 

the effort to develop for RISCs

� This state of affairs leads us to conclude
� If FPGA and RISC performance for a task are a similar order of 

magnitude, then choose RISC
� If the task is a small portion of the overall computing problem 

such that reducing it will not make a significant system 
improvement, then choose RISC

� If task is volatile, in other words the algorithm is not well 
defined or in flux, then choose RISC    
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Processor UtilizationProcessor Utilization
FPGA

� To maximize FPGA utilization
� Must program a large portion of the “gates” on an FPGA 
� Must keep all those programmed “gates” working a large portion of the time  

� FPGA can be reprogrammed or “context switched” but
� The whole FPGA goes off-line and looses state during reconfiguration which 

takes 10s of ms
• FPGAs some time in the future may work to address these limitations

� If you context switch often utilization goes down
• Try to hide FPGA reconfiguration time in human reaction time

� By adding generalizations to FPGA application code utilization 
can be improved
� E.G. Write a convolution with settable coefficients instead of fixed ones
� But, generalization costs gates

RISC
� To maximize RISC utilization

� Just have to keep it fed with data like any other processor

� RISC can context switch well
� In 10s of uSec and keep its state
� Plenty of instructions for different tasks can be kept in memory
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Processor ArchitectureProcessor Architecture
� RISC processor architecture is fixed by processor supplier

� We all become experts at this architecture 
� We understand it quantitatively and know how it will respond to changes

� On an FPGA a new processing architecture may be invented 
for each task
� Architecture may be designed to optimize performance on a task
� Architecture may be set by choice of an “FPGA middleware” or a high-

level FPGA programming tool
� My favorite architecture is the streaming dataflow with samples being 

clocked at the natural clock rate of the FPGA
• For example, this 7-point symmetrical convolution:

x
+

+
x

+
x

x

+

+

+
Streaming

Fabric
Interface

Streaming
Fabric
Interface

~4% of a 3M Gate FPGA
(excluding fabric interface)
16 bit samples @ 100MHZ
total performance 1GOP
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Problem DecompositionProblem Decomposition

� Big problems require multiple processors
� There are many different ways to break up problems into tasks for distribution

across a homogeneous or heterogeneous set of processors
� A good partition will optimize system performance 

� Consider radar data, it can be organized by channel, range, or pulse
� It may need to be re-organized a number of times in a problem
� But how can we minimize the re-orging or corner turning?
� Without enough processing between re-orgs on the fabric, an FPGA may be I/O 

bound and leave performance on the table

� Does the problem have a data funnel on the front end?
� Is the problem amenable to sensor data being sent directly to FPGA nodes, and 

processed to the point of a data reduction?
� If this can be achieved it keeps the voluminous sensor data off the fabric
� Even without a reduction, there is one less transit of the data across the fabric

� Is there a choke point in the problem when implemented entirely with 
RISC processors?
� A single task that is inefficient on RISC, or is just a huge number of ops 
� Can a strategic deployment of FPGA nodes on such a task fix the dataflow, and/or 

reduce the node count?
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Problem Data PrecisionProblem Data Precision
� RISC Processors have a set of supported data types

� PowerPC with AltiVec can vectorize 32-bit float, and 32-, 16-, and 8-bit ints
• Because AltiVec performance is the same for 32-bit floats and ints, we use 

floats for everything

� Using floats for everything has become the de facto standard because it 
makes development easier by minimizing the worries about precision

� FPGAs can implement any data type
� 18 x 18 bit hardwired multipliers and RAMs in 9-, 18-, and 36-bit widths do 

favor some data types
� Integer implementations can and should scale the bit precision as needed 

by each particular portion of an algorithm
• Minimizing the bit precision of integer processing will maximize the number

of ops and operating frequency that can be achieved

� Floating-point implementations are possible
• They use more resources per op
• Many FP resources are coming on line, including an IEEE standards effort
• FP on FPGAs is not bound to 32- and 64-bit types, any size of FP is possible

� Bottom line for data precision on FPGAs
• Engineering the data precision will maximize performance, but costs 

development effort to manage that precision
• Some portion of a task that requires FP does not require a trip to the fabric
• Brute force FP on FPGAs can be done, but performance will be reduced 
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Future TrendsFuture Trends

� Each aspect of the heterogeneous multicomputer 
is scaling at different rates
� What you know today as a balanced system will not be in the 

future
� RISC processors performance scales bumpily along tracking 

Moore’s law
� FPGA gate capacity scales with Moore’s law, but the operating 

frequency is also doubling every three years

� FPGAs will get chunkier
� Memory chunks have been in FPGAs for a while
� Hardwired multiplier chunks are a recent FPGA feature
� PPC 405 RISC processor chunks are here now

• This leads to another set of issues

� You can expect more DSP chunks
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Final ThoughtsFinal Thoughts

� All factors are 
interrelated
� Push on one, and often 

another one pops out

� Identify the largest 
computational tasks 
to attack first

� This is the same 
systems 
engineering 
problem you 
already know how 
to solve
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