Hybrid QR Factorization Algorithm for High
Performance Computing Architectures

Peter Vouras

Naval Research Laboratory Radar Division

Professor G.G.L. Meyer

Johns Hopkins University Parallel Computing and
\ Imaging Laboratory j
1

61?14 Outline

Background

Problem Statement

Givens Task

Householder Task

Paths Through Dependency Graph
Parameterized Algorithms
Parameters Used

Results

Conclusion

N M

Background

B In many least squares problems, QR decomposition is employed

e Factor matrix A into unitary matrix Q and upper triangular matrix R such
that A = QR

m Two primary algorithms available to compute QR decomposition

e Givens rotations

+ Pre-multiplying rows i-1 and i of a matrix 4 by a 2x2 Givens rotation matrix will zero the

entry A(i,j)
% * * * (] ~ éc - s Ué * * * (]
& u- € (€ U
eo * * * ¥ &S c {8 * * *U

e Householder reflections

+ When a column of 4 is multiplied by an appropriate Householder reflection, it is possible
to zero all the subdiagonal entries in that column

U_ee 2,08 * * *i
\ go * % *L,J_@_ T vV Ték * % *Q
u e VYV 2 u

41?14 Problem Statement

B Want to minimize the latency incurred when computing the QR
decomposition of a matrix A and maintain performance across
different platforms

m Algorithm consists of parallel Givens task and serial Householder task

m Parallel Givens task

e Allocate blocks of rows to different processors. Each processor uses
Givens rotations to zero all available entries within block such that

o A(i,j)=0onlyifA(i-1,j-1)=0and A(i, j-1)=0
m Serial Householder task

e Once Givens task terminates, all distributed rows are sent to root
processor which utilizes Householder reflections to zero remaining entries

Givens Task

*
"
"
"
*
*
*
*
*

m Each processor uses Givens
rotations to zero entries up to the
topmost row in the assigned group

* * * * * * * *

Processor 0
* * % % * % %

*

*

m Once task is complete, rows are
returned to the root processor

>*

O * * * * * %
m Givens rotations are accumulated in

a separate matrix before updating
all of the columns in the array

*1O O

* * % % * % %
Processor 1

* * * * * *

*

*

e Avoids updating columns that will
not be use by an immediately
following Givens rotation

*

O * * * * * * *

* * * * * * * *

Processor 2
* % % % * * % %

*

e Saves significant fraction of
computational flops

*

*
ao.o.onovaosonovaoNneNoNneNnen ey

BODP RPS B PP B RP %

O * * * * * * *

Householder Task

* * * * * * * *

*

(co ey el any anj an) e} el Gl an) G | Gny G Gn Y

m Root processor utilizes
Householder reflections to zero
remaining entries in Givens
columns

R

BOP BOP RO AP B %S

rocessor 0
* % |* % % * % %

*

*
+
"
%
%
%
"
"

m By computing a-priori where zeroes
will be after each Givens task is
complete, root processor can
perform a sparse matrix multiply
when performing a Householder
update for additional speed-up

*
%
%
%
%
*
*

*
"
%
%
%
%
%

*
"
%
%
%
"
"

e Householder update is A = A - Bvv’A

*
"
%
%
%
%
%

m Householder update involves
matrix-vector multiplication and an
outer product update

*
"
%
%
%
%
%

e Makes extensive use of BLAS
routines

O O O O O O O
O O O O O O O
*

*

*

*

*

*

*

*

P N W M O O N 0 ©

17
16
15
14
13
12
11
10

24
23
22
21
20
19
18

30
29
28
27
26
25

35

33
32
31

39
38
37
36

*

42

41 44
40 43 45

*

*

*

*

Algorithm must zero matrix entries
in such an order that previously
zeroed entries are not filled-in

Implies that A(i, j) can be zeroed
only if A(i-1, j-1) and A(i, j-1) are
already zero

More than one sequence exists to
zero entries such that above
constraint is satisfied

Choice of path through dependency
graph greatly affects performance

M

37
29
22
16
11

P, NN N

30
23
17
12

w o1

39
31
24
18
13

32
25
19
14
10

41

26
20
15

42

27
21

sk
sk
s ox
sk
43+
3B 4 *
28 36 45

By traversing dependency graph in
zig-zag fashion, cache line reuse is
maximized

e Data from row already in cache is
used to zero several matrix entries
before row is expunged from cache

M

% CPU
|
0 clock cycles

Registers

Q‘ | 2 - 3 clock cycles

First Level Cache

‘ 8 - 10 clock cycles u

NRI Parameterized ft\lgorlthms :
Memory Hierarchy

Second Level Cache

60 - 200 clock cycles

Parameterized Algorithms make
effective use of memory hierarchy

e Improve spatial locality of memory
references by grouping together
data used at the same time

e Improve temporal locality of memory
references by using data retrieved
from cache as many times as
possible before cache is flushed

Portable performance is primary
objective

Q Main Memory

\h_ Memory Hierarchy of SGI 02000

Givens Parameter

m Parameter ¢ controls the number of
columns in Givens task

*
"
"
%
%
%
%
%
%

m Determines how many matrix
entries can be zeroed before rows
are flushed from cache

* O O
o *
* *
* *
* *
* *
* *
* *
* *

*
*
*
*
*
*
*
*

*
* *
* *
* *
* *
* *
* *
* *
* *

*
"
*
"
%
%
%
%
%

(‘8 D> D> ('D)%_ CD>8> %CD> (‘)Q> CDéCD> 8) D> MD> (‘Q(:

*

*

*

*

*

*

*

*

*
ao.onoooononononoenoNnoNnaN ey

|

C8>('D> >(BCD>8> %CD>8> CDCSCD>8> M >CD>(_

it

>*

*

O O O O O OO O O

(3]

* ok

*

OO O O O O O O

. %
R
0 *
0 0
0 0
0 0
0 0
0 0
g

Householder Parameter

S T T T

>(.
(oY an} any an) an) an) x| an) i) an § G G Gl G e

m Parameter h controls the number of
columns zeroed by Householder
reflections at the root processor

m If his large, the root processor
performs more serial work, avoiding
the communication costs
associated with the Givens task

m However, the other processors sit
idle longer, decreasing the
efficiency of the algorithm

Work Partition Parameters

m Parameters v and w allow operator
to assign rows to processors such
that the work load is balanced and
processor idle time is minimized

* * * * * * * * *

Processor 0
* % * * % * % % %

* * * * * * * * *

* % * % % * % % %
Processor 1

* * * * * * *

* * * * * * * * *

* * * * * * * * *

Processor 2
* % * * % * % % %

* * * * * * * * *

T > D> D A P> DD PDD R D> D>
)(.
)(.

Results

= (-

L B

HP Superdome

\ SPAWAR in San Diego, CA

41?14 Server Computer (1)

48 550-MHz PA-RISC 8600 CPUs

1.5 MB on-chip cache per CPU
1 GB RAM / Processor

SGI 03000

NRL in Washington, D.C.

Server Computer (2)

512 R12000 processors running at
400 MHz

8 MB on-chip cache
Up to 2 GB RAM / Processor

Mercury
JHU in Baltimore, MD

Embedded Computer

8 Motorola 7400 processors with

AltiVec units
400 MHz clock
64 MB RAM per processor

O
S
o
e
S
&=
W

100 x 100 array
4 processors

12,h=0

p=

* Mercury
« SGI 03000

e HP Superdome

10°

10

o
—

J9swW - awi]

10

90

80

70

60

50

40

30

20

10

o
Y
O
-
3
4=
LL

100 x 100 array
4 processors
c=63,p=12

e HP Superdome

* Mercury
« SGI 03000

10°

o
—

J9swW - awi]

10’

50

45

40

35

30

25

20

15

10

Effect of w

2
10
- B 100 x 100 array
4 processors

« Mercury hfgg’pfllsﬂ’
- SGI 03000 €= V=
e HP Superdome

10!

Time - msec

%

10

34 36 38 40 42 44 46 48 50 52

e
N
7,
X
5
=
2
©
O
S
S
:
T
o
Q.

(wRL

4 processors

e Mercury
» SGI 03000
e« HP Superdome

500

450

400

350

300

250

200

\

7

\

150

100

J9sw - awi]

o
—

10

Time - msec

Scalability

* Mercury
« SGI 03000
e HP Superdome

P

T

T

4 5
Number of processors

6

j)

500 x 500 array

9.4 ms

» 4 processors
« SGI 03000

Comparison to SCALAPACK

\ PSGEQRF HYBRID

m For matrix sizes on the order of 100
by 100, the Hybrid QR algorithm
outperforms the SCALAPACK
library routine PSGEQRF by 16%

m Data distributed in block cyclic
fashion before executing PSGEQRF

41?14 Conclusion

m Hybrid QR algorithm using combination of Givens rotations and
Householder reflections is efficient way to compute QR decomposition
for small arrays on the order of 100 x 100

m Algorithm implemented on SGI 03000 and HP Superdome servers as
well as Mercury G4 embedded computer

B Mercury implementation lacked optimized BLAS routines and as a
consequence performance was significantly slower

m Algorithm has applications to signal processing problems such as
adaptive nulling where strict latency targets must be satisfied

NS s

