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Background

B In many least squares problems, QR decomposition is employed

e Factor matrix A into unitary matrix Q and upper triangular matrix R such
that A = QR

m Two primary algorithms available to compute QR decomposition

e Givens rotations

+ Pre-multiplying rows i-1 and i of a matrix 4 by a 2x2 Givens rotation matrix will zero the

entry A(i,j)
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e Householder reflections

+ When a column of 4 is multiplied by an appropriate Householder reflection, it is possible
to zero all the subdiagonal entries in that column
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41?14 Problem Statement

B Want to minimize the latency incurred when computing the QR
decomposition of a matrix A and maintain performance across
different platforms

m Algorithm consists of parallel Givens task and serial Householder task

m Parallel Givens task

e Allocate blocks of rows to different processors. Each processor uses
Givens rotations to zero all available entries within block such that

o A(i,j)=0onlyifA(i-1,j-1)=0and A(i, j-1)=0
m Serial Householder task

e Once Givens task terminates, all distributed rows are sent to root
processor which utilizes Householder reflections to zero remaining entries




Givens Task
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m Each processor uses Givens
rotations to zero entries up to the
topmost row in the assigned group
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m Once task is complete, rows are
returned to the root processor
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m Givens rotations are accumulated in

a separate matrix before updating
all of the columns in the array
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e Avoids updating columns that will
not be use by an immediately
following Givens rotation
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e Saves significant fraction of
computational flops
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Householder Task
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m Root processor utilizes
Householder reflections to zero
remaining entries in Givens
columns
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m By computing a-priori where zeroes
will be after each Givens task is
complete, root processor can
perform a sparse matrix multiply
when performing a Householder
update for additional speed-up
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e Householder update is A = A - Bvv’A
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m Householder update involves
matrix-vector multiplication and an
outer product update
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e Makes extensive use of BLAS
routines

O O O O O O O
O O O O O O O
*

*

*

*

*

*

*




*

P N W M O O N 0 ©

17
16
15
14
13
12
11
10

24
23
22
21
20
19
18

30
29
28
27
26
25

35

33
32
31

39
38
37
36

*

42

41 44
40 43 45

*

*

*

*

Algorithm must zero matrix entries
in such an order that previously
zeroed entries are not filled-in

Implies that A( i, j ) can be zeroed
only if A(i-1, j-1) and A( i, j-1) are
already zero

More than one sequence exists to
zero entries such that above
constraint is satisfied

Choice of path through dependency
graph greatly affects performance
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By traversing dependency graph in
zig-zag fashion, cache line reuse is
maximized

e Data from row already in cache is
used to zero several matrix entries
before row is expunged from cache
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NRI Parameterized ft\lgorlthms :
Memory Hierarchy

Second Level Cache

60 - 200 clock cycles

Parameterized Algorithms make
effective use of memory hierarchy

e Improve spatial locality of memory
references by grouping together
data used at the same time

e Improve temporal locality of memory
references by using data retrieved
from cache as many times as
possible before cache is flushed

Portable performance is primary
objective

Q Main Memory

\h_ Memory Hierarchy of SGI 02000




Givens Parameter

m Parameter ¢ controls the number of
columns in Givens task
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m Determines how many matrix
entries can be zeroed before rows
are flushed from cache
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Householder Parameter
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m Parameter h controls the number of
columns zeroed by Householder
reflections at the root processor

m If his large, the root processor
performs more serial work, avoiding
the communication costs
associated with the Givens task

m However, the other processors sit
idle longer, decreasing the
efficiency of the algorithm




Work Partition Parameters

m Parameters v and w allow operator
to assign rows to processors such
that the work load is balanced and
processor idle time is minimized
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Results
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HP Superdome

\ SPAWAR in San Diego, CA

41?14 Server Computer (1)

48 550-MHz PA-RISC 8600 CPUs

1.5 MB on-chip cache per CPU
1 GB RAM / Processor




SGI 03000

NRL in Washington, D.C.

Server Computer (2)

512 R12000 processors running at
400 MHz

8 MB on-chip cache
Up to 2 GB RAM / Processor




Mercury
JHU in Baltimore, MD

Embedded Computer

8 Motorola 7400 processors with

AltiVec units
400 MHz clock
64 MB RAM per processor
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100 x 100 array
4 processors
c=63,p=12
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Effect of w
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Scalability
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9.4 ms

» 4 processors
« SGI 03000

Comparison to SCALAPACK

\ PSGEQRF HYBRID

m For matrix sizes on the order of 100
by 100, the Hybrid QR algorithm
outperforms the SCALAPACK
library routine PSGEQRF by 16%

m Data distributed in block cyclic
fashion before executing PSGEQRF




41?14 Conclusion

m Hybrid QR algorithm using combination of Givens rotations and
Householder reflections is efficient way to compute QR decomposition
for small arrays on the order of 100 x 100

m Algorithm implemented on SGI 03000 and HP Superdome servers as
well as Mercury G4 embedded computer

B Mercury implementation lacked optimized BLAS routines and as a
consequence performance was significantly slower

m Algorithm has applications to signal processing problems such as
adaptive nulling where strict latency targets must be satisfied
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