
08/10/2001
1

NRL

Hybrid QR Factorization Algorithm for High
Performance Computing Architectures

Peter Vouras

Naval Research Laboratory Radar Division

Professor G.G.L. Meyer

Johns Hopkins University Parallel Computing and
Imaging Laboratory

08/10/2001
2

NRL Outline

n Background

n Problem Statement

n Givens Task

n Householder Task

n Paths Through Dependency Graph

n Parameterized Algorithms

n Parameters Used

n Results

n Conclusion

08/10/2001
3

NRL Background

n In many least squares problems, QR decomposition is employed

l Factor matrix A into unitary matrix Q and upper triangular matrix R such
that A = QR

n Two primary algorithms available to compute QR decomposition

l Givens rotations

u Pre-multiplying rows i-1 and i of a matrix A by a 2x2 Givens rotation matrix will zero the
entry A(i, j)

l Householder reflections

u When a column of A is multiplied by an appropriate Householder reflection, it is possible
to zero all the subdiagonal entries in that column
















 −
=









***0

cs

sc















 −=









****2

***0

**** T
T

vv
vv

I

08/10/2001
4

NRL Problem Statement

n Want to minimize the latency incurred when computing the QR
decomposition of a matrix A and maintain performance across
different platforms

n Algorithm consists of parallel Givens task and serial Householder task

n Parallel Givens task

l Allocate blocks of rows to different processors. Each processor uses
Givens rotations to zero all available entries within block such that

u A(i, j) = 0 only if A(i-1, j-1) = 0 and A(i, j-1) = 0

n Serial Householder task

l Once Givens task terminates, all distributed rows are sent to root
processor which utilizes Householder reflections to zero remaining entries

08/10/2001
5

NRL Givens Task

n Each processor uses Givens
rotations to zero entries up to the
topmost row in the assigned group

n Once task is complete, rows are
returned to the root processor

n Givens rotations are accumulated in
a separate matrix before updating
all of the columns in the array

l Avoids updating columns that will
not be use by an immediately
following Givens rotation

l Saves significant fraction of
computational flops







































********00

*********0

********00

*********0

*******000

********00

*********0

Processor 0

Processor 1

Processor 2

08/10/2001
6

NRL Householder Task

n Root processor utilizes
Householder reflections to zero
remaining entries in Givens
columns

n By computing a-priori where zeroes
will be after each Givens task is
complete, root processor can
perform a sparse matrix multiply
when performing a Householder
update for additional speed-up

l Householder update is A = A - ßvvTA

n Householder update involves
matrix-vector multiplication and an
outer product update

l Makes extensive use of BLAS
routines 






































*******000

*******000

*******000

*******000

*******000

*******000

*******000

********00

*********0

Processor 0

08/10/2001
7

NRL Dependency Graph - Path 1

*45434036312518101

**444137322619112

***4238332720123

****39342821134

*****352922145

******3023156

*******24167

********178

*********9

n Algorithm must zero matrix entries
in such an order that previously
zeroed entries are not filled-in

n Implies that A(i, j) can be zeroed
only if A(i-1, j-1) and A(i, j-1) are
already zero

n More than one sequence exists to
zero entries such that above
constraint is satisfied

n Choice of path through dependency
graph greatly affects performance

08/10/2001
8

NRL Dependency Graph - Path 2

n By traversing dependency graph in
zig-zag fashion, cache line reuse is
maximized

l Data from row already in cache is
used to zero several matrix entries
before row is expunged from cache

*453628211510631

**4435272014952

***433426191384

****42332518127

*****4132241711

******40312316

*******393022

********3829

*********37

08/10/2001
9

NRL

n Parameterized Algorithms make
effective use of memory hierarchy

l Improve spatial locality of memory
references by grouping together
data used at the same time

l Improve temporal locality of memory
references by using data retrieved
from cache as many times as
possible before cache is flushed

n Portable performance is primary
objective

Parameterized Algorithms :
Memory Hierarchy

CPU

Registers

First Level Cache

Main Memory

Second Level Cache

Memory Hierarchy of SGI O2000

0 clock cycles

2 - 3 clock cycles

8 - 10 clock cycles

60 - 200 clock cycles

08/10/2001
10

NRL Givens Parameter

n Parameter c controls the number of
columns in Givens task

n Determines how many matrix
entries can be zeroed before rows
are flushed from cache







































********00

*********0

********00

*********0

*******000

********00

*********0

c

08/10/2001
11

NRL Householder Parameter

n Parameter h controls the number of
columns zeroed by Householder
reflections at the root processor

n If h is large, the root processor
performs more serial work, avoiding
the communication costs
associated with the Givens task

n However, the other processors sit
idle longer, decreasing the
efficiency of the algorithm







































*****00000

*****00000

*****00000

*****00000

*****00000

******0000

*******000

********00

*********0

c h

08/10/2001
12

NRL Work Partition Parameters

n Parameters v and w allow operator
to assign rows to processors such
that the work load is balanced and
processor idle time is minimized







































Processor 0

Processor 1

Processor 2

v

w

08/10/2001
13

NRL

Results

08/10/2001
14

NRL

HP Superdome
SPAWAR in San Diego, CA

Server Computer (1)

n 48 550-MHz PA-RISC 8600 CPUs

n 1.5 MB on-chip cache per CPU

n 1 GB RAM / Processor

08/10/2001
15

NRL Server Computer (2)

n 512 R12000 processors running at
400 MHz

n 8 MB on-chip cache

n Up to 2 GB RAM / Processor

SGI O3000
NRL in Washington, D.C.

08/10/2001
16

NRL Embedded Computer

n 8 Motorola 7400 processors with
AltiVec units

n 400 MHz clock

n 64 MB RAM per processor

Mercury
JHU in Baltimore, MD

08/10/2001
17

NRL Effect of c

100 x 100 array
4 processors
p = 12, h = 0

0 10 20 30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

T
im

e
-

m
se

c

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
18

NRL

100 x 100 array
4 processors
c = 63, p = 12

Effect of h

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

h

T
im

e
-

m
se

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
19

NRL Effect of w

100 x 100 array
4 processors
h = 15, p = 10,
c = 60, v = 15

34 36 38 40 42 44 46 48 50 52
10

0

101

10
2

w

T
im

e
-

m
se

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
20

NRL

100 150 200 250 300 350 400 450 500
10

•0

10
•1

10
•2

10
•3

10
•4

10
•5

n = m

T
im

e
-

m
se

c

Performance vs Matrix Size

4 processors

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
21

NRL Scalability

2 3 4 5 6 7
0

2

4

6

8

10

12
T

im
e

-
m

se
c

Number of processors

• Mercury
• SGI O3000
• HP Superdome

500 x 500 array

08/10/2001
22

NRL Comparison to SCALAPACK

n For matrix sizes on the order of 100
by 100, the Hybrid QR algorithm
outperforms the SCALAPACK
library routine PSGEQRF by 16%

n Data distributed in block cyclic
fashion before executing PSGEQRF

7

7.5

8

8.5

9

9.5

PSGEQRF HYBRID

9.4 ms

7.9 ms

• 4 processors
• SGI O3000

08/10/2001
23

NRL Conclusion

n Hybrid QR algorithm using combination of Givens rotations and
Householder reflections is efficient way to compute QR decomposition
for small arrays on the order of 100 x 100

n Algorithm implemented on SGI O3000 and HP Superdome servers as
well as Mercury G4 embedded computer

n Mercury implementation lacked optimized BLAS routines and as a
consequence performance was significantly slower

n Algorithm has applications to signal processing problems such as
adaptive nulling where strict latency targets must be satisfied

