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This paper presents a framework that can be adapted to perform automated mapping/scheduling and 
architecture trades for embedded computing environments. The framework is based on a learning automata 
model whose adaptable nature makes it invaluable in tools that provide end-to-end solutions for embedded 
systems development. The framework has been incorporated into one such tool, Systems and Applications 
Genesis Environment (SAGE). The paper begins with an introduction to learning automata and the 
architecture of the framework. The following sections discuss how algorithms for automated 
mapping/scheduling and architecture trades are constructed within the framework. 
 
2.0 Learning-Automata based Framework 

The framework is based on a variable structure stochastic automaton (VSSA). The VSSA guarantees 
robust behavior in the absence of complete knowledge of the solution space, and has rigorous mathematical 
properties that can be exploited to develop efficient algorithms. It can be viewed as a stochastic finite state 
machine with a set of actions and associated probabilities that help learn the nature of an unknown 
environment. For every random action that is chosen, the environment that needs to be learned provides a 
response that is stochastically related to the chosen action. The iterative process of choosing random 
actions and recording the responses is continued until the solution space is satisfactorily explored, as 
depicted in Figure 1. A learning automaton is usually represented as a quintuple {Φ,α,β,A,G}, it’s 
mathematical representation is defined below. The VSSA however can be mathematically simplified such 
that each state corresponds to a distinct action and hence the output function mapping G becomes an 
identity mapping. Hence, the VSSA becomes a triple {α,β,A}. The nature of the response “β”, determines 
if the VSSA is a P-model, Q-model or S-model automaton [1]. The learning algorithm A, drives the 
reinforcement scheme that controls the probability vector of the actions. 
Mathematical representation: 

• The state of the automaton at any iteration ‘n’, denoted by φ(n) is an element of the finite set 
Φ = {φ1,φ2,...,φs} 

• The output of the automaton at the iteration ‘n’, denoted by α(n), is an element of the set 
α = {α1,α2,...,αr} 

• The input to the automaton at the iteration ‘n’, denoted by β(n), is an element of the set 
β = {β1,β2,...,βm} 
Or β = {(a, b)} 

• A, is the updating algorithm or the reinforcement scheme. 
• The output function G(.), determines the output of the automaton at any iteration ‘n’ in terms of 

the state at that iteration. 
α (n) = G [φ (n)] 

• Reinforcement Scheme: 
P (n+1) = A ( P(n), α(n), β(n) ) 

 Where P(n) is the probability vector at iteration ‘n’. 
 

Our framework consists of a set of independent learning automata. Each with their own set of 
actions but with a common learning algorithm. The response from the environment is translated to 
individual responses for each of the automata based on different heuristics. The framework adapted to the 
automated mapping algorithm is depicted in Figure 2. The important elements in the framework are the 
environment, actions for each of the automata, and the reinforcement scheme or learning algorithm. 
 
3.0 Automated Mapping/Scheduling 

In automated mapping/scheduling, the objective is to match and schedule application tasks to a 
heterogeneous suite of machines such that pre-defined performance criteria such as size, weight, power, 
latency and bandwidth are optimally satisfied. The learning automata framework can be adapted to achieve 
this objective. A pictorial representation of this schema is shown in Figure 2. 



Environment: Consider a Heterogeneous Computing (HC) system model. It consists of the application 
represented as a task flow graph (TFG) and the target architecture represented as a processor graph (PG). 
Different cost metrics can be defined for the HC system model [2].  
Automata Construction: Every task in the TFG is associated with an automaton. The set of actions for 
each of the automata is the set of processors (nodes) in the PG. An action therefore corresponds to mapping 
a task to a processor. The probability equations for the reinforcement scheme and five heuristics which 
were developed to drive the learning algorithm are omitted here due to space restrictions and can be found 
in [2]. Results of the mapping algorithm are shown in figures 4 and 5. The performance metric in these 
graphs is “Minimizing the total execution time”. The behavior of the algorithm is plotted for varying 
weights and number of application tasks. In Figure 4, the communication complexity is assumed to be 
medium. It can be seen that as weight is reduced and the number of tasks increased, the optimality in the 
chosen performance metric is lost. The graph also depicts the graceful degradation in performance. In 
Figure 5 the communication complexity is assumed to be low and similar observations can be made. 
Key Benefits: The automated mapping algorithm within the proposed framework provides several benefits. 
The primary advantage is the ability to define multiple cost metrics that drive the optimality of the system 
individually. The construction of the algorithm is such that the system model is made independent of the 
learning automata model, making it universally applicable to any application domain. This feature allows 
the mapping scheme to be incorporated as a plug-in into a tool for application development for embedded 
systems like SAGE, thereby adding value to the tool.  
 
4.0 Architecture Trades 

An architecture trade requires the automatic construction of a system that minimally conforms to the 
design specifications provided by the user. This architecture can then be fine-tuned to match the exact 
system requirements. The proposed framework can be used to develop algorithms that aid the architecture 
trades process. Figure 3 depicts the adaptation of the framework to this trades process. 
Environment: The environment here is the detailed architecture for an embedded computing system. The 
system is analyzed for design requirements and a figure of merit is used to reflect the health of the 
architecture. The figure of merit is used to generate a response that is fed to the automata model. 
Automata Construction: Here the user typically has to specify the component types that define his target 
system. An automaton is then associated with every component type contained in the target system. For 
instance, if the system architecture consists of a general purpose processor, two ASIC chips, a memory 
module and a network bus, then the automata model will contain an automaton each for the processor, each 
of the ASIC chips, the memory module and the network bus. The actions for the automata will correspond 
to the different classes of components that are available under each type. For example, if the available 
processor classes are Pentium III, FPGA, and PowerPC 603, then the automaton for the processor will have 
three actions corresponding to each of the processors.  

When each automaton selects an action at random, the resultant system forms the target for the 
application. The target is analyzed for design requirements and the response is used to drive the algorithm 
iteratively until an optimal solution is reached.  
Key Benefits: As can be seen from the construction, the learning automata framework that was used for 
automated mapping/scheduling is easily adapted for architecture trades. This particular feature of the 
framework makes it invaluable for tools that provide end-to-end solutions. Due to its randomized nature, 
the proposed methodology allows the designer to better explore the design space.  
 
5.0 Conclusion 
In conclusion, we propose a framework that can be adapted to perform automated mapping/scheduling and 
architecture trades for heterogeneous systems. The framework is based on an automata model that provides 
critical advantages over existing systems for both mapping and trades study. The utility of this framework 
demands special attention in the context of incorporating into application development tools that provide 
complete end-to-end solutions. This capability has been incorporated into SAGE [3], a systems integration 
framework for embedded systems. 
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Figure 1: Learning Automaton Model 
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Figure 2: Framework for Automated Mapping/Scheduling 
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Figure 3: Framework for Architecture Trades 
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Figure 4: Performance plot of mapping algorithm for medium communication complexity 

 
Figre 5: Performance plot of mapping algorithm for low communication complexity 


