
Adaptive Framework for Automated Mapping and Architecture Trades for
Embedded Heterogeneous Systems

Raju D Venkataramana
Tandel Systems, LLC

This paper presents a framework that can be adapted to perform automated mapping/scheduling and
architecture trades for embedded computing environments. The framework is based on a learning automata
model whose adaptable nature makes it invaluable in tools that provide end-to-end solutions for embedded
systems development. The framework has been incorporated into one such tool, Systems and Applications
Genesis Environment (SAGE). The paper begins with an introduction to learning automata and the
architecture of the framework. The following sections discuss how algorithms for automated
mapping/scheduling and architecture trades are constructed within the framework.

2.0 Learning-Automata based Framework

The framework is based on a variable structure stochastic automaton (VSSA). The VSSA guarantees
robust behavior in the absence of complete knowledge of the solution space, and has rigorous mathematical
properties that can be exploited to develop efficient algorithms. It can be viewed as a stochastic finite state
machine with a set of actions and associated probabilities that help learn the nature of an unknown
environment. For every random action that is chosen, the environment that needs to be learned provides a
response that is stochastically related to the chosen action. The iterative process of choosing random
actions and recording the responses is continued until the solution space is satisfactorily explored, as
depicted in Figure 1. A learning automaton is usually represented as a quintuple {Φ,α,β,A,G}, it’s
mathematical representation is defined below. The VSSA however can be mathematically simplified such
that each state corresponds to a distinct action and hence the output function mapping G becomes an
identity mapping. Hence, the VSSA becomes a triple {α,β,A}. The nature of the response “β”, determines
if the VSSA is a P-model, Q-model or S-model automaton [1]. The learning algorithm A, drives the
reinforcement scheme that controls the probability vector of the actions.
Mathematical representation:

• The state of the automaton at any iteration ‘n’, denoted by φ(n) is an element of the finite set
Φ = {φ1,φ2,...,φs}

• The output of the automaton at the iteration ‘n’, denoted by α(n), is an element of the set
α = {α1,α2,...,αr}

• The input to the automaton at the iteration ‘n’, denoted by β(n), is an element of the set
β = {β1,β2,...,βm}
Or β = {(a, b)}

• A, is the updating algorithm or the reinforcement scheme.
• The output function G(.), determines the output of the automaton at any iteration ‘n’ in terms of

the state at that iteration.
α (n) = G [φ (n)]

• Reinforcement Scheme:
P (n+1) = A (P(n), α(n), β(n))

 Where P(n) is the probability vector at iteration ‘n’.

Our framework consists of a set of independent learning automata. Each with their own set of
actions but with a common learning algorithm. The response from the environment is translated to
individual responses for each of the automata based on different heuristics. The framework adapted to the
automated mapping algorithm is depicted in Figure 2. The important elements in the framework are the
environment, actions for each of the automata, and the reinforcement scheme or learning algorithm.

3.0 Automated Mapping/Scheduling

In automated mapping/scheduling, the objective is to match and schedule application tasks to a
heterogeneous suite of machines such that pre-defined performance criteria such as size, weight, power,
latency and bandwidth are optimally satisfied. The learning automata framework can be adapted to achieve
this objective. A pictorial representation of this schema is shown in Figure 2.

Environment: Consider a Heterogeneous Computing (HC) system model. It consists of the application
represented as a task flow graph (TFG) and the target architecture represented as a processor graph (PG).
Different cost metrics can be defined for the HC system model [2].
Automata Construction: Every task in the TFG is associated with an automaton. The set of actions for
each of the automata is the set of processors (nodes) in the PG. An action therefore corresponds to mapping
a task to a processor. The probability equations for the reinforcement scheme and five heuristics which
were developed to drive the learning algorithm are omitted here due to space restrictions and can be found
in [2]. Results of the mapping algorithm are shown in figures 4 and 5. The performance metric in these
graphs is “Minimizing the total execution time”. The behavior of the algorithm is plotted for varying
weights and number of application tasks. In Figure 4, the communication complexity is assumed to be
medium. It can be seen that as weight is reduced and the number of tasks increased, the optimality in the
chosen performance metric is lost. The graph also depicts the graceful degradation in performance. In
Figure 5 the communication complexity is assumed to be low and similar observations can be made.
Key Benefits: The automated mapping algorithm within the proposed framework provides several benefits.
The primary advantage is the ability to define multiple cost metrics that drive the optimality of the system
individually. The construction of the algorithm is such that the system model is made independent of the
learning automata model, making it universally applicable to any application domain. This feature allows
the mapping scheme to be incorporated as a plug-in into a tool for application development for embedded
systems like SAGE, thereby adding value to the tool.

4.0 Architecture Trades

An architecture trade requires the automatic construction of a system that minimally conforms to the
design specifications provided by the user. This architecture can then be fine-tuned to match the exact
system requirements. The proposed framework can be used to develop algorithms that aid the architecture
trades process. Figure 3 depicts the adaptation of the framework to this trades process.
Environment: The environment here is the detailed architecture for an embedded computing system. The
system is analyzed for design requirements and a figure of merit is used to reflect the health of the
architecture. The figure of merit is used to generate a response that is fed to the automata model.
Automata Construction: Here the user typically has to specify the component types that define his target
system. An automaton is then associated with every component type contained in the target system. For
instance, if the system architecture consists of a general purpose processor, two ASIC chips, a memory
module and a network bus, then the automata model will contain an automaton each for the processor, each
of the ASIC chips, the memory module and the network bus. The actions for the automata will correspond
to the different classes of components that are available under each type. For example, if the available
processor classes are Pentium III, FPGA, and PowerPC 603, then the automaton for the processor will have
three actions corresponding to each of the processors.

When each automaton selects an action at random, the resultant system forms the target for the
application. The target is analyzed for design requirements and the response is used to drive the algorithm
iteratively until an optimal solution is reached.
Key Benefits: As can be seen from the construction, the learning automata framework that was used for
automated mapping/scheduling is easily adapted for architecture trades. This particular feature of the
framework makes it invaluable for tools that provide end-to-end solutions. Due to its randomized nature,
the proposed methodology allows the designer to better explore the design space.

5.0 Conclusion
In conclusion, we propose a framework that can be adapted to perform automated mapping/scheduling and
architecture trades for heterogeneous systems. The framework is based on an automata model that provides
critical advantages over existing systems for both mapping and trades study. The utility of this framework
demands special attention in the context of incorporating into application development tools that provide
complete end-to-end solutions. This capability has been incorporated into SAGE [3], a systems integration
framework for embedded systems.

References:

1. K. Narendra and M.A.L. Thathachar, Learning Automata: An Introduction, Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

2. R.D. Venkataramana and N. Ranganathan, “Multiple Cost Optimization for Heterogeneous
Computing Systems Using Learning Automata”, Proceedings of the HCW, pp 137-145, April
1999.

3. M. Patel and K.L Jordan, “SAGE: An Application Development Tool Suite for High Performance
Computing Systems”, 2000 IEEE Aerospace Conference, Mar 18-25, Montana.

Figure 1: Learning Automaton Model

 Heuristics to translate environment response

A0

β 0 β 1

βs-1

A1 As-1

Action Set

HC System Model
Response

α0

α1

αs-1

Figure 2: Framework for Automated Mapping/Scheduling

 Heuristics to translate performance response

Abus

Bus Processor Memory

Aproc Am

System
Solution

 Evaluate System Perform ance
Response

Bus type Proc type Mem type

Figure 3: Framework for Architecture Trades

Random Environment

Learning Automaton

< θ,α,β,A,G >

α(n) β(n)

Figure 4: Performance plot of mapping algorithm for medium communication complexity

Figre 5: Performance plot of mapping algorithm for low communication complexity

