

 Rapid Portable Signal Processing Software Development Architecture

 Kevin C. Tirko
 Pennsylvania State University
 Applied Research Laboratory

 Abstract

The Pennsylvania State University’s Applied Research Laboratory is continuing to
develop an architecture independent signal processing software development capability.
This capability permits rapid transition of algorithm design specifications and/or Matlab
algorithm implementations into embedded target architectures. The C++ language and
object-oriented techniques were chosen to promote software class development
permitting a high degree of software reuse in future applications. The VSIPL middleware
standard is used as the portable performance bridge to multiple target architectures.

The initial application to use this capability was a torpedo-embedded SONAR algorithm
suite that performed data conditioning, signal correlation, signal detection, and targe t
feature measurement. The algorithm design was transitioned during 2001 from an
extensive Matlab testbed onto an embedded PowerPC architecture under VxWorks in
approximately 4 months and was subsequently fielded in-water with success. Additional
SONAR applications are utilizing the capability for field experiments in 2002 with
productivity gains observed in excess of 400%.

The capability emphasizes operating system independence. All existing SONAR
applications can execute under Unix, Linux, and VxWorks under the control of the
appropriate Makefile or compilation switch. This allows application development to take
place on a “convenient” system, perhaps awaiting Moore’s Law solutions for the
eventual embedded target.

The presentation will detail the primary motivations and features in the design of this
capability. Specifically the many advantages of the C++ classes will be emphasized. The
classes promote rapid code development, reduce debugging effort, and provide
performance profiling and tuning of finished software. The classes also provide the
interface to the VSIPL middleware standard library and hide all the details of VSIPL
from the application software. As a result, application software has no responsibilities for
initialization of VSIPL objects or VSIPL memory management which can be time
consuming and problematic.

