
Multidimensional Performance Modeling
for Advanced, Embedded, Signal Processors

Michael Stebnisky
Lockheed Martin Advanced Technology Laboratories

1 Federal Street
Camden, NJ 08102

mstebnis@atl.lmco.com

Background
Traditional performance modeling approaches for embedded signal processors are unable to address
emerging requirements and component technologies. This is a result of an increased awareness and need
for dynamically adaptive or reconfigurable systems, particularly in the areas of power dissipation/
performance. Most of the awareness results from research and development programs, such as UC
Berkeley’s Infopad; Defense Advanced Research Project Agency’s Adaptive Computing Systems, Power
Aware Computing and Communications, and Polymorphous Computing Systems. The availability of
commercial, off-the-shelf processors that scale clock and voltage, like StrongARM and Crusoe, have also
provided near-term motivation.

Objectives
With the emerging availability of hardware and software components that provide on-the-fly optimization
of power, performance, and other system parameters comes the need to develop decision-support systems
that enable designers to take advantage of these characteristics so as to model, simulate, and compare
systems against alternative implementations.

Our research seeks to develop algorithms, methods, and rapid-prototyping tools that will enable designers
to evaluate system implementations for performance and power optimization as well as other system
parameters, such as resolution, latency, and quality of service. Developing new architectures with
significantly improved performance, without increased power dissipation, is an important application. We
have made considerable progress against our objectives.

Our focus has been to address heterogeneous signal-processing systems that may be rapidly, dynamically
reconfigurable. We use data-flow graphs to describe system functionality. Each task in a data-flow graph
may have one to many different implementations, encapsulated in a component library, and may differ in
one or several of the set of characteristics described above. The objective is to optimally schedule tasks
based on the dynamically varying objective function. This involves determining which processors are
available and determining which task implementation for which processor best meets the current
objective function. Processors may be unavailable, because they are busy, determined faulty, or marked as
unavailable.

Design-time and Run-time Elements
To maximize the effectiveness of our approach, the overall system includes online and offline elements,
where offline and design-time are roughly synonymous, as are online and run-time. The objectives of the
offline portion are to select an optimally minimal set of task implementations as well as capture
information about the applications, data-flow graphs, system hardware, etc. that can be used at runtime to
expedite the selection of task implementations. This may be performed manually or by using Monte Carlo
searching techniques. The library is large, and it may contain many components that are not relevant to a
particular system. The first step then is to prune it to a subset of relevant components. Succeeding steps
further prune the set of components to that which best services the defined objectives. Given a known set



of applications, baseline architecture, and one or more of the indicated libraries, an optimum subset of
components can be determined.

Given an appropriate subset of components, the next requirement is to develop methods and algorithms to
optimally assign tasks to processors. This assignment is based on processor availability and
characteristics of all the task implementations that can execute on the available processors. The
assignment method is as an extension of a simple but effective agent-based dynamic scheduler.

Using all available information developed offline, online optimization focuses on dynamic selection of
execution components that best match complex objective functions.

We are developing the algorithms and methods as extensions to our CSIM (C Simulator) tool.
Information on CSIM is available from our website at: http://www.atl.lmco.com/proj/csim/ We plan
further improvements to the algorithms and methods used in this development.

Results To Date
We have focused our development on the online capability, and performed the following:
• Reused a data-flow graph and processor architecture from a recently completed application.
• Modified the baseline architecture, consisting of ten SHARC processors and various interconnect

elements (RACE NIC, RACE XBAR, local bus), to represent a system of six PowerPC processors, two
FPGA-based reconfigurable coprocessors, and two ASIC coprocessors.

• Defined a library of estimates of several implementations for five different characteristics and mode
assignments for each task in the data-flow graph.

• Modified CSIM’s Dynamic Scheduler to schedule tasks and processors based on complex objective
functions.

• Defined five operating modes with different objective functions: BASE mode, a safe mode where task
implementations are fixed assignments; FAST mode, a fixed assignment mode where some tasks have a
preferred implementation that executes faster than BASE mode; FASTEST mode, where all task
implementations for every available processor are evaluated and the fastest is executed; LOPWR mode,
where all task implementations for every available processor are evaluated and the lowest in power
dissipation is executed; and DDPSWC mode, where all task implementations for every available
processor are evaluated and the task implementation selected for execution maximizes the function
1/(delay*delay*power*size*weight*cost)).

• Added a capability to mark processors as “faulted” or “unavailable” for execution. Processors may be
marked or unmarked dynamically.

• Tested and demonstrated the capability, including execution in all five modes with up to nine
unavailable processors.

• Overall improvement in max performance/min power ratio of 5:1 achieved for the base case.
• Additional applications are in evaluation.

Conclusions
Emerging system-level requirements and component technologies are demanding new capabilities from
rapid-prototyping systems. We are developing capabilities to simply and effectively address these
requirements. Results to date include a 5:1 improvement in maximum performance/minimum power ratio
for our base case.


