
* This work is sponsored by the US Navy, under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

AltiVec Extensions to the Portable Expression Template
Engine (PETE)*

Edward Rutledge

MIT Lincoln Laboratory

Abstract

Two simultaneous and conflicting goals of a high performance
embedded signal processing library are expressiveness and
efficiency. As library designers, we seek to provide an
interface that allows signal processing algorithms to be
expressed in a mathematical form, which simplifies the
process of translating from algorithm specification to
implementation. The Portable Expression Template Engine
(PETE) [1] helps us to create such a high-level interface for a
C++ signal processing library, without sacrificing efficiency.
In this work, we examine the suitability of PETE for the
Motorolla G4 architecture, with its SIMD AltiVec extensions.
Our experiments show that PETE is suitable for use on the G4
architecture.

Introduction

By supporting efficient, high-level, composable C++ operator
and function implementations of element-wise multi-
dimensional array operations, the Portable Expression
Template Engine (PETE) assists an embedded C++ signal
processing library in achieving the goals of expressiveness and
efficiency. For instance, a library utilizing PETE supports
expressions like A=B+C-D, where A, B, C and D are vectors,
and where the processor efficiency for executing the statement
is similar to that of a hand coded C/C++ loop. However,
PETE typically is used to operate on one element of the
array(s) at a time, which is inefficient when SIMD instructions
are available, as is the case with the G4 processor architecture.
 The Motorolla G4 processor architecture has gained
popularity as an embedded signal processing platform due to
its potential for favorable power to performance ratio. In
order to realize this favorable power to performance ratio, a
programmer must take advantage of the G4’s SIMD AltiVec
unit, which enables operations on 128 bit values, allowing
operations across multiple array elements (for example 4
floating point values) at once. C/C++ language extensions
have been defined to allow programmers to take advantage of
the G4’s AltiVec unit, and are now supported by many
compilers. In this work, we show how to use the AltiVec
C/C++ extensions along with PETE to achieve both a high
level of performance and a high level of abstraction in a signal
processing library running on the G4. Our experiments show
that an experimental vector class using PETE performs about
as well as a hand-coded loop that makes use of the AltiVec

extensions, performs slightly worse than an implementation
using an optimized VSIPL library (Vector Signal and Image
Processing Library) [3] for expressions consisting of only one
operation, and performs better than an implementation using
an optimized VSIPL library for expressions consisting of more
than one operation or expressions operating on small data
objects. This performance difference is due to the nature of
the VSIPL C language binding, not to deficiencies in the
particular implementation of VSIPL; because VSIPL cannot
take advantage of the C++ expression template [2] and
inlining features, VSIPL cannot combine several element-wise
operations to produce an implementation with performance
equivalent to a hand coded for loop. PETE, on the other hand,
which was built to take advantage of those features of the C++
language, can. In addition to having good performance
characteristics, the PETE implementation results in more
straightforward application code than either the hand coded
loop or VSIPL implementations.

Experiments

To show the performance characteristics of PETE using
AltiVec, we compare it to two other implementations: a hand-
coded C/C++ loop implementation using the AltiVec
extensions, and an implementation using an optimized
implementation of the VSIPL core-lite profile. We implement
a variety of expressions involving vectors of floating point
values, ranging from simple one-operation expressions, up to
expressions consisting of 4 or more operations. We include
multiply-add operations in our experiments, which are of
particular relevance to signal and image processing, and which
are directly supported by the AltiVec architecture in the form
of a 1 cycle multiply-and-accumulate instruction.
 We run our experiments on a single Power PC 7400 (G4)
processor with a 450 MHz clock residing in a DY4 CHAMP-
AV quad G4 processor board and running the VxWorks
operating system. The processor has 64KB of L1 cache,
which is split into 32KB each for data and instructions, 2MB
of L2 cache, and access to 128MB of local SDRAM, of which
it is configured to use 64 MB. To compile our tests, we use a
GCC 2.95.4 Solaris to G4/VxWorks cross-compiler, which is
an unofficial release based on GCC 2.95.3, but with support
for the C/C++ AltiVec extensions, and some patches to
improve VxWorks compatibility. We use a VSIPL core-lite
implementation, purchased from MPI Software Technology

* This work is sponsored by the US Navy, under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the
author and are not necessarily endorsed by the Department of Defense.

(website: www.mpi-softtech.com), specifically optimized for
the G4/VxWorks target.

Results

This section contains a subset of the results we will present.
In it, we show experimental results for the expression
A=B+C*D, where A , B, C, and D are vectors of length N.
Figure 1 shows the performance of all 3 implementations
(hand coded AltiVec loop, PETE with AltiVec, optimized
VSIPL).

The horizontal axis is log2 N. The vertical axis is the time
required by each implementation to perform the operation,
normalized to the time of the hand coded AltiVec loop
implementation, averaged over many iterations.
 There are several interesting features in this figure. Note
that the hand coded loop and PETE implementations
outperform the optimized VSIPL core-lite implementation of
this particular expression by at least 40% for vectors of size
215 (32K) elements and less. There are two reasons for this.
First, the VSIPL implementation makes function calls to the
VSIPL library, which cannot be inlined by the compiler
because the VSIPL library functions are pre-compiled object
code. The hand coded loop implementation of course does not
contain anything that needs to be inlined, and the compiler
does inline the PETE implementation, so its performance is
nearly equivalent to that of the loop. Second, because we are
using the core-lite profile of VSIPL, there is no vector
multiply-add function available. Instead, in the VSIPL
implementation of the expression, the multiply of C and D
must be performed, the results stored in a temporary vector,
and then the temporary vector added to B. This results in
reduced performance both because the AltiVec multiply-add
instruction cannot be used, and because the materialization of
the intermediate temporary vector results in poor cache usage.
If the VSIPL multiply-add function were available to us (as it
is in the core profile of VSIPL), we would probably see the
performance of the VSIPL implementation become roughly
equivalent to that of the other two implementations at vector

sizes around 256 or 512 elements (which is the behavior
observed for a simple vector add, the results of which will be
shown in the full presentation).
 Also note the “spikes” in the VSIPL implementation’s time
compared to the other two implementations at vector sizes of
211 (2K) and 217 (128K). These are once again due to the
necessity of storing the results of the VSIPL multiply in a
temporary vector before performing the add. These spikes are
the result of the VSIPL implementation’s overflowing the L1
cache and L2 cache, respectively, before the other two
implementations do because of the extra temporary vector
required to hold the results of the multiply. Again, if the
VSIPL mu ltiply-add function were available to us, these
spikes would not appear.
 Finally, note that the VSIPL implementation outperforms
the other two by a slight margin at vector length 216 and that
execution time for the 3 implementations is roughly equivalent
once they overflow L2 cache. Similar results are seen in
implementations of other expressions. Further analysis and
investigation is required to determine why this is the case.

Conclusions

We have shown that PETE is compatible with the G4
processor architecture and its SIMD AltiVec extensions. We
have demonstrated how to incorporate the AltiVec C/C++
extensions into element-wise operators for a vector class
implemented using PETE. We have also shown that these
operators perform nearly as well as a hand-coded loop, and
outperform an optimized VSIPL implementation for small
vector sizes or non-trivial expressions. The difference in
performance is due to the nature of the VSIPL C binding, not
to deficiencies in the VSIPL implementation. In addition to
the performance benefits, the PETE element-wise operators
with AltiVec extensions support a higher level of abstraction,
easing the transition from a mathematical algorithm
specification to its high performance implementation.

References
[1] Scott Haney, James Crotinger, Steve Karmesin, and
Stephen Smith. PETE, the Portable Expression Template
Engine. Dr. Dobbs Journal, 1999

[2] T. Veldhuizen. Expression Templates. C++ Report,
7(5):26-31, 1995.

[3] David A. Schwartz, Randall R. Judd, William J. Harrod,
and Dwight P. Manly. VSIPL 1.02 API , 2002.

