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Abstract 
 
Two simultaneous and conflicting goals of a high performance 
embedded signal processing library are expressiveness and 
efficiency.  As library designers, we seek to provide an 
interface that allows signal processing algorithms to be 
expressed in a mathematical form, which simplifies the 
process of translating from algorithm specification to 
implementation.  The Portable Expression Template Engine 
(PETE) [1] helps us to create such a high-level interface for a 
C++ signal processing library, without sacrificing efficiency.  
In this work, we examine the suitability of PETE for the 
Motorolla G4 architecture, with its SIMD AltiVec extensions.  
Our experiments show that PETE is suitable for use on the G4 
architecture. 
 
Introduction 
 
By supporting efficient, high-level, composable C++ operator 
and function implementations of element-wise multi-
dimensional array operations, the Portable Expression 
Template Engine (PETE) assists an embedded C++ signal 
processing library in achieving the goals of expressiveness and 
efficiency.  For instance, a library utilizing PETE supports 
expressions like A=B+C-D, where A, B, C and D are vectors, 
and where the processor efficiency for executing the statement 
is similar to that of a hand coded C/C++ loop.  However, 
PETE typically is used to operate on one element of the 
array(s) at a time, which is inefficient when SIMD instructions 
are available, as is the case with the G4 processor architecture. 
     The Motorolla G4 processor architecture has gained 
popularity as an embedded signal processing platform due to 
its potential for favorable power to performance ratio.  In 
order to realize this favorable power to performance ratio, a 
programmer must take advantage of the G4’s SIMD AltiVec 
unit, which enables operations on 128 bit values, allowing 
operations across multiple array elements (for example 4 
floating point values) at once.  C/C++ language extensions 
have been defined to allow programmers to take advantage of 
the G4’s AltiVec unit, and are now supported by many 
compilers.  In this work, we show how to use the AltiVec 
C/C++ extensions along with PETE to achieve both a high 
level of performance and a high level of abstraction in a signal 
processing library running on the G4.  Our experiments show 
that an experimental vector class using PETE performs about 
as well as a hand-coded loop that makes use of the AltiVec 

extensions, performs slightly worse than an implementation 
using an optimized VSIPL library (Vector Signal and Image 
Processing Library) [3] for expressions consisting of only one 
operation, and performs better than an implementation using 
an optimized VSIPL library for expressions consisting of more 
than one operation or expressions operating on small data 
objects.  This performance difference is due to the nature of 
the VSIPL C language binding, not to deficiencies in the 
particular implementation of VSIPL; because VSIPL cannot 
take advantage of the C++ expression template [2] and 
inlining features, VSIPL cannot combine several element-wise 
operations to produce an implementation with performance 
equivalent to a hand coded for loop.  PETE, on the other hand, 
which was built to take advantage of those features of the C++ 
language, can.  In addition to having good performance 
characteristics, the PETE implementation results in more 
straightforward application code than either the hand coded 
loop or VSIPL implementations. 
 
Experiments 
 
To show the performance characteristics of PETE using 
AltiVec, we compare it to two other implementations: a hand-
coded C/C++ loop implementation using the AltiVec 
extensions, and an implementation using an optimized 
implementation of the VSIPL core-lite profile.  We implement 
a  variety of expressions involving vectors of floating point 
values, ranging from simple one-operation expressions, up to 
expressions consisting of 4 or more operations.  We include 
multiply-add operations in our experiments, which are of 
particular relevance to signal and image processing, and which 
are directly supported by the AltiVec architecture in the form 
of a 1 cycle multiply-and-accumulate instruction. 
     We run our experiments on a single Power PC 7400 (G4) 
processor with a 450 MHz clock residing in a DY4 CHAMP-
AV quad G4 processor board and running the VxWorks 
operating system.  The processor has 64KB of L1 cache, 
which is split into 32KB each for data and instructions, 2MB 
of L2 cache, and access to 128MB of local SDRAM, of which 
it is configured to use 64 MB.  To compile our tests, we use a 
GCC 2.95.4 Solaris to G4/VxWorks cross-compiler, which is 
an unofficial release based on GCC 2.95.3, but with support 
for the C/C++ AltiVec extensions, and some patches to 
improve VxWorks compatibility.  We use a VSIPL core-lite 
implementation, purchased from MPI Software Technology 
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(website: www.mpi-softtech.com), specifically optimized for 
the G4/VxWorks target. 
 
Results 
 
This section contains a subset of the results we will present.  
In it, we show experimental results for the expression 
A=B+C*D, where A , B, C, and D are vectors of length N.  
Figure 1 shows the performance of all 3 implementations 
(hand coded AltiVec loop, PETE with AltiVec, optimized 
VSIPL). 

The horizontal axis is log2 N.  The vertical axis is the time 
required by each implementation to perform the operation, 
normalized to the time of the hand coded AltiVec loop 
implementation, averaged over many iterations.  
     There are several interesting features in this figure.  Note 
that the hand coded loop and PETE implementations 
outperform the optimized VSIPL core-lite implementation of 
this particular expression by at least 40% for vectors of size 
215 (32K) elements and less.  There are two reasons for this.  
First, the VSIPL implementation makes function calls to the 
VSIPL library, which cannot be inlined by the compiler 
because the VSIPL library functions are pre-compiled object 
code.  The hand coded loop implementation of course does not 
contain anything that needs to be inlined, and the compiler 
does inline the PETE implementation, so its performance is 
nearly equivalent to that of the loop.  Second, because we are 
using the core-lite profile of VSIPL, there is no vector 
multiply-add function available.  Instead, in the VSIPL 
implementation of the expression, the multiply of C and D 
must be performed, the results stored in a temporary vector, 
and then the temporary vector added to B.  This results in 
reduced performance both because the AltiVec multiply-add 
instruction cannot be used, and because the materialization of 
the intermediate temporary vector results in poor cache usage.  
If the VSIPL multiply-add function were available to us (as it 
is in the core profile of VSIPL), we would probably see the 
performance of the VSIPL implementation become roughly 
equivalent to that of the other two implementations at vector 

sizes around 256 or 512 elements (which is the behavior 
observed for a simple vector add, the results of which will be 
shown in the full presentation). 
     Also note the “spikes” in the VSIPL implementation’s time 
compared to the other two implementations at vector sizes of 
211 (2K) and 217 (128K).  These are once again due to the 
necessity of storing the results of the VSIPL multiply in a 
temporary vector before performing the add.  These spikes are 
the result of the VSIPL implementation’s overflowing the L1 
cache and L2 cache, respectively, before the other two 
implementations do because of the extra temporary vector 
required to hold the results of the multiply.  Again, if the 
VSIPL mu ltiply-add function were available to us, these 
spikes would not appear.      
     Finally, note that the VSIPL implementation outperforms 
the other two by a slight margin at vector length 216 and that 
execution time for the 3 implementations is roughly equivalent 
once they overflow L2 cache.  Similar results are seen in 
implementations of other expressions.  Further analysis and 
investigation is required to determine why this is the case. 
 
Conclusions 
 
We have shown that PETE is compatible with the G4 
processor architecture and its SIMD AltiVec extensions.  We 
have demonstrated how to incorporate the AltiVec C/C++ 
extensions into element-wise operators for a vector class 
implemented using PETE.  We have also shown that these 
operators perform nearly as well as a hand-coded loop, and 
outperform an optimized VSIPL implementation for small 
vector sizes or non-trivial expressions.  The difference in 
performance is due to the nature of the VSIPL C binding, not 
to deficiencies in the VSIPL implementation.  In addition to 
the performance benefits, the PETE element-wise operators 
with AltiVec extensions support a higher level of abstraction, 
easing the transition from a mathematical algorithm 
specification to its high performance implementation. 
 

References 
[1] Scott Haney, James Crotinger, Steve Karmesin, and 
Stephen Smith.  PETE, the Portable Expression Template 
Engine.  Dr. Dobbs Journal, 1999  
 
[2] T. Veldhuizen.  Expression Templates.  C++ Report, 
7(5):26-31, 1995. 
 
[3] David A. Schwartz, Randall R. Judd, William J. Harrod, 
and Dwight P. Manly.  VSIPL 1.02 API , 2002. 
 


