
Resource Management for Digital Signal Processing
via Distributed Parallel Computing

Albert Reuther and Joel Goodman
(reuther, jgoodman)@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

May 31, 2002

Abstract
The resource management of real-time, pipeline
streamed digital signal processing applications is
not considered in the common Grid Computing
paradigms. For this class of applications,
scheduling for task- and data- parallelism is
needed in order to meet extremely high
throughput and communication requirements.
This research focuses on the development of a
resource manager for dynamically launching such
applications on distributed parallel, embedded
computers.

Introduction

Fast computational and internetworking
technologies are the enabling technologies for
Grid Computing[1], in which applications are
executed on clusters of computational resources
without regard to geographic locality. The Globus
Toolkit [2] along with such resource managers as
Legion [3] and Condor [4] provide many of the
fundamental Network Resource Management
(NRM) tools needed to realize this form of
location independent computing, but these tools
do not adequately addresses the requirements of
real-time, pipeline streamed digital signal
processing applications because such applications
have strict throughput and latency requirements
while using a minimal number of computational
resources. Therefore, a different approach must be
taken to satisfy these requirements. Further, in
military tactical situations, real-time quality-of-
service is essential so that mission-critical results
can be delivered in a fixed time interval. To
expedite such delivery, applications are launched
on marshaled resources so data delay or loss will
be mitigated.

The Research

The scheduling of real-time, pipeline streamed
digital signal processing applications is done in
two stages: system model graph generation and
graph search for determining a feasible
scheduling.

To facilitate the generation of a representative
processing graph to be used for scheduling,, the
applications must be partitioned into a series of
pipelined tasks. (For example, in a simple radar
processing application, it may be partitioned into
three tasks: beamforming, pulse compression, and
detection.) Each task is mapped onto a set of one
or more processing resources; these mappings are
modeled as vertices of the graph, while the
communication links between these mappings are
modeled as graph edges as was done for the S3P
algorithm [5]. Once these graphs are generated,
the vertices and edges for the mappings must be
populated with weights such task latency,
resource utilization, and throughput.

The focus of this research is the development of
the graph search to determine a feasible path
through the graph; that is, choosing a feasible
mappings for each of the pipelined, real-time tasks
in the application given processors per mapping,
latency, utilization, and throughput weight
measures. The feasible solution should mitigate
resource contention while being computationally
efficient because of the potentially vast number of
permutations of resource configurations.

This research addresses these challenges with a
novel approach to an efficient search for a
solution to the resource-scheduling problem of
optimizing a discrete objective function while
meeting a set of inequality constraints. The
objective function and the constraints are
operational parameters that are chosen to expedite
the delivery of time-sensitive information while
consuming as few computational and
communication resources as possible.

We have found that for high throughput,
streaming applications, our algorithm which we
call Decision Directed Learning (DDL)
outperforms other combinatorial optimization
techniques such as search-optimized genetic
algorithms (GA), as is used in the IOS resource
manager [6], in the quality of the solution and
time to solution.



Figures 1 and 2 show the GA and DDL graph-
search scores and times where the objective is to
find a minimum score given a set of constraints
for a set of fully-connected graphs that are 1000-
vertices (mappings) by ten tasks in size. The
simulation results were obtained using 1000-
weighted graphs automatically generated using
weights randomly selected from a uniform
distribution with a fixed set of constraints, upon
which both DDL and GA operate. In Figure 1,
DDL has a mean score centered near 40 with the
predominate number of search-scores ranging
from 30-60, while GA scores are centered near 60
with the predominate number of search-scores
ranging from 40-80, or roughly a 35% decline in
performance with respect to DDL. Similarly
comparing the time to a best solution from
Figure 2, DDL outperformed GA on average by
roughly 50%. Note that GA was unable to find a
solution (path through the graph) that met
constraints in roughly .6% of the graphs searched,
while DDL always was able to find a solution.

0 20 40 60 80 100 120 140
0

10

20

30

40

50
Genetic Algorithm Best Results [G(V,E) = 1000 x 10]

Score

N
um

b
er

 O
f 

O
c

cu
re

nc
es

0 20 40 60 80 100 120 140
0

20

40

60

80
DDL Best Results [G(V,E) = 1000 x 10]

Score

N
um

b
er

 O
f 

O
cc

ur
e

nc
es

Figure 1: Histograms of solution score of DDL vs.
GA.

This technology can be applied to a variety of
parallel computing systems that are typically used
for real-time pipelined parallel digital signal
processing applications. For instance, ground-
based supercomputing centers could receive real-
time sensor data and process the data stream. As
another example, large clusters of embedded
multiple processor cards could be installed in
several racks in a command and control aircraft.
For both of these systems, the DDL algorithm

would choose the appropriate resources upon
which the sensor data processing would be
executed.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
Genetic Algorithm Best Results Time [G(V,E) = 1000 x10]

Seconds

N
um

b
er

 o
f O

cc
u

re
n

ce
s

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100
DDL Best Results Time [G(V,E) = 1000 x10]

Seconds

N
um

b
er

 o
f O

cc
u

re
n

ce
s

Figure 2: Histograms of time to produce best result
for graph searching for GA and DDL.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint
for a New Computing Infrastructure, Morgan-
Kaufman, 1999.

[2] I. Foster and C. Kesselman, Globus: “A
Metacomputing Infrastructure Toolkit.” I. Foster,
C. Kesselman. Intetnational Journal of
Supercomputer Applications, 11(2):115-128, 1997.

[3] A. Grimshaw, A. Ferrari, F. Knabe, and M.
Humphrey, “Wide-Area Computing: Resource
Sharing on a Large Scale,” IEEE Computer, May
1999, pp. 29-37.

[4] D. Epema, M. Livny, R. van Dantzig, X. Evers,
and J. Pruyne, “A Worldwide Flock of Condors:
Load Sharing Among Workstation Clusters.”
Future Generation Computer Systems, 12:53-65,
1996.

[5] H. Hoffmann, J. Kepner, and R. Bond, S3P:
Automatic, Optimized Mapping of Signal
Processing Applications to Parallel Architectures,”
HPEC 2001.

[6] J.R. Budenske, R.S Ramanujan, and H.J Siegel,
“On-Line Use of Off-Line Derived Mappings for
Iterative Automatic Target Recognition Tasks and
a Particular class of hardware,” In Proceedings of
the Heterogeneous Computing Workshop, 1997
(HCW '97), pp. 96- 110.


