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Recent years have witnessed the emergence of custom microprocessors that are embedded within a plethora of devices
used in everyday life. While custom embedded solutions provide major opportunities for performance enhancement via
instruction level parallelism, they magnify the needs for sustainable high rates of data delivery to the processing units.
Hence we believe that the same trend of customization that is becoming prevalent in the microprocessor domain is just
as important (if not more important) when one considers the design of a supporting memory or cache hierarchy. To a
large extent, the design of embedded memory systems remains an ad hoc art, often relying on intuition and extensive
simulations to choose the best match for a particular processing unit [1, 11]. It is our contention however, that the memory
organization is a major specialization dimension that warrants careful consideration when application specific computing
solutions are necessary.

The memory hierarchy has been a ubiquitous component in the design of computing platforms since the introduction
of the von Neumann machine [2, 12]. It has widely served to bridge the performance gap between processor and memory
system, usually by employing deep cache hierarchies where each level trades off capacity for access speed. Unfortunately,
as processors are increasingly used in the context of embedded systems, the cost of the memory hierarchy has been a
limiting factor in its ability to play as central a role. Quite often, this limitation is because of the physical size as well
as the implications to the complexity of the processors used in the embedded domain. As a result, the impact on the
overall performance of a system can be overwhelming. Namely, given the massive parallelism that may be available in
the custom processor, long access latencies dramatically decrease processor throughput, and hence strongly warrant the
need for latency masking and ameliorating techniques.

Recognizing the need to overcome the stated limitation, we have proposed several novel and lightweight compiler
optimizations [4, 6, 8, 9, 10] to help ameliorate the memory bottleneck. Furthermore, we are able to show that an
innovativedata remappingtechnique [9] allows a program to achieve the same overall running time with just half the
cache resources, when compared to a program that has not been remapped. Hence, simpler machines can achieve
the same level of performance as more complex and expensive machines in the absence of our techniques. Stated
in simple terms, remapping is a reorganization of the application’s data in memory, such that memory elements that
are accessed contemporaneously are in fact placed together in memory.Thus, remapping aims to improve the spatial
locality of memory elements that in fact also share temporal locality.The simple transformation achieves its impressive
improvement by ensuring that the ratio of the number of items found in cache (cache-hits) to those that are fetched
from main memory (cache-misses) remain the same, with half the memory size, without compromising the application
execution time. Such a result offers the intriguing possibility of acompiler playing a significant role in exploring and
optimizing the design space of a custom memory system. As shown in Figure 1(a), design space exploration involves
exploring alternate hardware or architectural solutions to meet a specified performance constraint for afixed program
P . Thus while the program is fixed, the optimization techniques are applied to find the hardware solution subject to the
given performance or execution time constraint. By contrast and as shown in Figure 1(b), the dual of this problem is
the domain of a traditional compiler optimization, wherein the applications or programsP1,P2 . . .Pk are optimized to
achieve the best possible performance on afixed target processor. In Table 1, we illustrate how our technique may be
regarded as a design space exploration tool which can help lower the memory of a custom design. In particular, given
a “user-specified” performance constraint, remapping can yield a system meeting this goal whose cost is significantly
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Table 1. Example impact of data remapping on cost during design space exploration.
Benchmark Benchmark Performance Goal Before Remapping After Remapping Saving

Suite 106 Cycles L2 Size L2 Cost L2 Size L2 Cost

179.ART SPEC2000 13,000 1.0Mb $19.38 0.0Mb $ 0.00 $19.38
TREEADD OLDEN 880 1.0Mb $19.38 0.5Mb $17.80 $ 1.58

PERIMETER OLDEN 520 2.0Mb $48.00 1.0Mb $19.38 $28.62
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(b) Traditional compiler optimization.

Figure 1. Viewing design space exploration and compiler optimizations as duals of each other.

lower than that of a corresponding system satisfying the same goal, but without the benefits of remapping. For example,
given a fixed execution time goal of 600 million cycles for the application PERIMETER, remapping allows us to use an
L2 memory size of 1Mb instead of 2Mb for a total saving of $28.62 which is 60% of the cost1. As another example, for
the benchmarks 179.ART, data remapping allows the use of a memory hierarchy that only consists of a primary cache.
More generally, we have demonstrated that this improvement is consistent in the context of several applications including
floating-point and integer applications from the DARPA DIS suite as well as the well-known OLDEN and SPEC2000
suites.

In order to use the savings afforded by our compiler strategies as crucial steps in exploring the design space of an
embedded cache system, we note that it is important to quantify the potentials for improvement using some fundamental
variables over which the exploration and optimizations can proceed.In a recent paper to appear in the ACM Transactions
in Embedded Computing Systems, we provide a novel characterization of a set of such variables[9]. For example, while
prefetching is widely accepted in cache systems, its efficacy is clearly dependent on being able to match its prediction and
replacement policies with the actual needs of the program. To this end, we quantify the degree of mismatch between the
prefetchers in the architecture and the memory access patterns of the program. In addition, using our measures, we can
quantify the improvements achieved by our optimizations along this dimension. Our methodology extends the current
state-of-the-art design space exploration and optimization techniques [3, 5, 7] to pointer-centric applications ubiquitous
to C-based applications and hence to embedded systems, and it will become increasingly important as the needs for
application specific architectures become prevalent.

1For the 2MB L2 cache, we use two 1Mb Toshiba TC55W800FT-55 SRAM chips, each at a cost of $24. For the 1Mb L2 cache, we use two 0.5Mb
Toshiba TC55V400AFT7 SRAM chips, each at a cost of $9.19. For the 0.5Mb L2 cache, we use four 128Kb Cypress CY62128VL-70SC SRAM chips,
each at a cost of $4.425.
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