
* This work is sponsored by the Defense Advanced Research Projects Agency, under Air Force Contract F19628-00-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the
Department of Defense.

** Dr. Mullin participated in this work while on sabbatical leave from the Dept. of Computer Science, University of Albany, State
University of New York, Albany, NY.

Monolithic Compiler Experiments using C++ Expression
Templates*

Lenore R. Mullin, Edward Rutledge, Robert Bond

MIT Lincoln Laboratory**

Abstract

In this work, we study and prototype compiler optimizations
for array indexing operations. The optimizations can be
proven theoretically correct by the Psi Calculus, developed by
Mullin [5], and result in very efficient implementations in
which the need to materialize intermediate array values in
complex expressions is eliminated. Our prototype
implementation is based on C++ expression templates [8], and
the Portable Expression Template Engine (PETE) [1]
developed at the Advanced Computing Laboratory at Los
Alamos National Laboratory. Thus, it consists of a set of C++
class and function templates that can be included and used by
a C++ program or class library. We test the performance of
our optimizations by applying them to compositions of 1-D
indexing operations. We then compare the performance of our
optimizations to that of a hand coded C/C++ loop
implementation, and a naïve C++ implementation where
intermediate array values are materialized after each indexing
operation. We show that our optimizations result in an
implementation whose performance is nearly as good as a
hand coded loop implementation, whose interface achieves the
high-level of abstraction of a naïve C++ implementation, and
whose performance far outstrips that of a naïve C++
implementation.

Introduction

Monolithic programs consist of statements that execute
directly on multi-dimensional array objects that are considered
basic types in a language. This level of expressiveness is
desirable not only because a large class of signal processing
and scientific computing applications consist of operations on
arrays, but also because at the monolithic level, regularity of
access patterns and array structure can be abstracted and made
visible to a language or compiler underneath, assisting in
transforming the statements into efficient implementations.
An implementation that can take advantage of such regularity
can achieve performance rivaling that of hand crafted code.
With decomposition and mapping strategies formalized and
abstracted to the same high level, optimization over diverse
memory hierarchies and parallel architectures can be
algebraically derived. When followed by the scalarization
techniques employed in modern compilers, the result is highly
optimized and efficient code that can be theoretically proven

to have minimal memory accesses due to the materialization
of unnecessary intermediate values and temporary variables.
 When rules from the Psi calculus are applied, any
expression of array index manipulation operations, such as
circular shift, reverse, concatenate, and transpose, can be
reduced to a series of loops, where each loop assigns part of an
operand to part of the result. Consider A=reverse(B++C),
where ++ is the array concatenation operator, reverse simply
reverses the vector, and A, B, and C are 1-D arrays. The
expression can be converted into 2 loops, the first assigning
from B to the end of A, and the second assigning from C to the
beginning of A. This is the most efficient implementation of
the expression in terms of the number of memory reads and
writes. In fact, we can prove that, for any given array
expression, reduction rules from the Psi Calculus can be
applied in a mechanical process guaranteed to produce an
implementation having the least possible number of memory
reads and writes [5]. Psi reduction has been prototyped as a
compiler for an MOA (Mathematics of Arrays) language [4]; a
compiler preprocessor for Fortran [6]; a compiler for Single
Assignment C (SAC), which is an extended version of C [3];
and a set of C++ classes [2].
 To explore similar compiler-style optimizations to C++, we
used expression templates. We augmented the Portable
Expression Template Engine (PETE) to implement this same
reduction process, essentially providing a C++ to C++
“compiler” for converting array expressions to a series of for
loops. This implementation allows a C++ high-performance
embedded signal processing library to easily provide efficient,
composable, high-level array operations.

Experiments

To show the performance characteristics of our expression
template implementation of array operations, we compare it to
two other implementations: a hand-coded C/C++ loop
implementation, and a naïve C++ implementation in which
each array operator returns an intermediate array result. The
particular algorithm we have chosen to implement is a time-
domain convolution of two 1-D vectors. We chose this
algorithm both because it is common in signal processing, and
because it requires a combination of several basic array
operations, such as take, drop, and concatenate, and arithmetic
operators such as sum, for its implementation. This latter
quality is important in allowing us to demonstrate the
composability of array operations in our approach. That is, we

can combine low-level array operations to easily build
efficient high-level operations. The choice of 1-D array
objects was for convenience; [5] shows how the Psi calculus
concepts being demonstrated apply to multi-dimensional
arrays.
 We run our experiments on a single Power PC 7400 (G4)
processor with a 450 MHz clock residing in a DY4 CHAMP-
AV quad G4 processor board and running the VxWorks
operating system. The processor has 64KB of L1 cache,
which is split into 32KB each for data and instructions, 2MB
of L2 cache, and access to 128MB of local SDRAM, of which
it is configured to use 64 MB. To compile our tests, we use a
GCC 2.95.4 Solaris to G4/VxWorks cross-compiler, which is
an unofficial release based on GCC 2.95.3, but with support
for the C/C++ AltiVec extensions, and some patches to
improve VxWorks compatibility.

Results

Although we do not have experimental results for convolution
as of the time of this writing, we will be presenting those
results in our full presentation. We do at this time have
experimental results for several low-level 1-D index
manipulation operations, including take, drop, and reverse.
Reverse simply reverses a 1-D array. Take(N, A) , where A is a
1-D array of length M, and N is a non-negative integer, results
in a 1-D array of length N, whose contents are the first N
elements of A. Drop(N, A) under the same assumptions results
in a 1-D array of length M-N, whose contents are the last M-N
elements of A. Take and drop are both used in composing the
convolution operation. We present experimental results here
for the expression:
A=reverse(take(M-M/3,drop(M/4, reverse(B)))), where B is
length M. Figure 1 shows the performance of all 3
implementations (hand coded loop, enhanced PETE, naïve
C++).

The horizontal axis is log2 M. The vertical axis is the average
time of each implementation to perform the operation,
normalized to the average time of the hand coded loop

implementation. Note that the loop and expression template
implementations significantly outperform the naïve C++
approach, with the latter taking roughly 200 times as long as
the loop implementation for small (M<16) arrays. Figure 2
compares only the performance of the hand coded loop and
enhanced PETE implementations.

Note that the enhanced PETE implementation incurs some
overhead, which is apparent for small vector sizes (for this
expression, the expression template approach takes over twice
as long as the hand coded loop when M=8). This overhead is
mostly due to the fact that the expression must go through
several transformation steps prior to processing, and since the
arrays are dynamically sized, some of these steps must be
performed at run time. However, there are ways to mitigate
this overhead. We will discuss and present results obtained
from 2 of these: a setup step to be performed at system startup
time for each subsequent assignment in the system, and static
(compile time) sizing of array variables. Each approach has
advantages and disadvantages, but both should largely
eliminate the remaining overhead in the enhanced PETE
implementation of the index manipulation operations
compared to the hand-coded loop implementation.

Conclusions and Future Work

As is the case with element-wise algebraic array operations,
expression templates can be used to implement array index
manipulation operations with an efficiency that rivals that of
hand coded loop implementations, while providing the high
level of abstraction of naïve C++ implementations. We have
demonstrated how to achieve this by augmenting PETE to
implement Mullin’s Psi Calculus reduction rules for a 1-D
array class. In this abstract, we have presented results
demonstrating that such an implementation performs nearly as
well as a hand coded loop implementation, and far
outperforms a naïve C++ implementation, for low-level index
manipulation operations. In our full presentation, we will
show results for a convolution of two 1-D vectors, which
should confirm our initial results. Future work will include

extending this work to multi-dimensional distributed arrays,
and extending this work beyond single expressions to
implement broader program block optimizations, as described
in [7].

References
[1] Scott Haney, James Crotinger, Steve Karmesin, and
Stephen Smith. PETE, the Portable Expression Template
Engine. Dr. Dobbs Journal, 1999.

[2] Manal Helal and Ahmed Smeh. Dimension and Shape
Invariant Programming: The Implementation and the
Application. In Proceedings of 3rd WSEAS Symposium on
Mathematical Methods and Computational Techniques in
Electrical Engineering, December 2001.

[3] L. Mullin, W. Kluge, and S. Scholtz. On Programming
Scientific Applications in SAC – a Functional Language
Extended by a Subsystem for High Level Array Operations.
In Proceedings of the 8th International Workshop on
Implementation of Functional Languages, Bonn, Germany,
1996.

[4] L. Mullin and S. Thibault. Reduction Semantics for Array
Expressions: The PSI Compiler. Technical Report CSC94-05,
Dept. of CS, University of Missouri-Rolla, 1994.

[5] L. M. R. Mullin. A Mathematics of Arrays. PhD thesis,
Syracuse University, December 1998.

[6] L. R. Mullin, D. Eggleston, L. J. Woodrum, and W.
Rennie. The PGI-PSI Project: Preprocessing Optimizations
for Existing and New F90 Intrinsics in HPF Using
Compositional Symmetric Indexing of the Psi Calculus. In
Parallel Computers, pages 345-355, Aachen, Germany,
December 1996. Forschungszentrum Julich GmbH.

[7] D. Rosenkrantz, L. Mullin, and H. B. Hunt III. On
Materializations of Array-Valued Temporaries. Lecture Notes
in Computer Science, 2017:127-141, 2002.

[8] T. Veldhuizen. Expression Templates. C++ Report,
7(5):26-31, 1995.

