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Abstract 
 
In this work, we study and prototype compiler optimizations 
for array indexing operations.  The optimizations can be 
proven theoretically correct by the Psi Calculus, developed by 
Mullin [5], and result in very efficient implementations in 
which the need to materialize intermediate array values in 
complex expressions is eliminated.  Our prototype 
implementation is based on C++ expression templates [8], and 
the Portable Expression Template Engine (PETE) [1] 
developed at the Advanced Computing Laboratory at Los 
Alamos National Laboratory.  Thus, it consists of a set of C++ 
class and function templates that can be included and used by 
a C++ program or class library.  We test the performance of 
our optimizations by applying them to compositions of 1-D 
indexing operations.  We then compare the performance of our 
optimizations to that of a hand coded C/C++ loop 
implementation, and a naïve C++ implementation where 
intermediate array values are materialized after each indexing 
operation.  We show that our optimizations result in an 
implementation whose performance is nearly as good as a 
hand coded loop implementation, whose interface achieves the 
high-level of abstraction of a naïve C++ implementation, and 
whose performance far outstrips that of a naïve C++ 
implementation. 
 
Introduction 
 
Monolithic programs consist of statements that execute 
directly on multi-dimensional array objects that are considered 
basic types in a language.  This level of expressiveness is 
desirable not only because a large class of signal processing 
and scientific computing applications consist of operations on 
arrays, but also because at the monolithic level, regularity of 
access patterns and array structure can be abstracted and made 
visible to a language or compiler underneath, assisting in 
transforming the statements into efficient implementations.  
An implementation that can take advantage of such regularity 
can achieve performance rivaling that of hand crafted code.  
With decomposition and mapping strategies formalized and 
abstracted to the same high level, optimization over diverse 
memory hierarchies and parallel architectures can be 
algebraically derived.  When followed by the scalarization 
techniques employed in modern compilers, the result is highly 
optimized and efficient code that can be theoretically proven 

to have minimal memory accesses due to the materialization 
of unnecessary intermediate values and temporary variables. 
     When rules from the Psi calculus are applied, any 
expression of array index manipulation operations, such as 
circular shift, reverse, concatenate, and transpose, can be 
reduced to a series of loops, where each loop assigns part of an 
operand to part of the result.  Consider A=reverse(B++C), 
where ++ is the array concatenation operator, reverse simply 
reverses the vector, and A, B, and C are 1-D arrays.  The 
expression can be converted into 2 loops, the first assigning 
from B to the end of A, and the second assigning from C to the 
beginning of A.  This is the most efficient implementation of 
the expression in terms of the number of memory reads and 
writes.  In fact, we can prove that, for any given array 
expression, reduction rules from the Psi Calculus can be 
applied in a mechanical process guaranteed to produce an 
implementation having the least possible number of memory 
reads and writes [5].  Psi reduction has been prototyped as a 
compiler for an MOA (Mathematics of Arrays) language [4]; a 
compiler preprocessor for Fortran [6]; a compiler for Single 
Assignment C (SAC), which is an extended version of C [3]; 
and a set of C++ classes [2]. 
     To explore similar compiler-style optimizations to C++, we 
used expression templates.  We augmented the Portable 
Expression Template Engine (PETE) to implement this same 
reduction process, essentially providing a C++ to C++ 
“compiler” for converting array expressions to a series of for 
loops.  This implementation allows a C++ high-performance 
embedded signal processing library to easily provide efficient, 
composable, high-level array operations. 
 
Experiments 
 
To show the performance characteristics of our expression 
template implementation of array operations, we compare it to 
two other implementations: a hand-coded C/C++ loop 
implementation, and a naïve C++ implementation in which 
each array operator returns an intermediate array result.  The 
particular algorithm we have chosen to implement is a time-
domain convolution of two 1-D vectors.  We chose this 
algorithm both because it is common in signal processing, and 
because it requires a combination of several basic array 
operations, such as take, drop, and concatenate, and arithmetic 
operators such as sum, for its implementation.  This latter 
quality is important in allowing us to demonstrate the 
composability of array operations in our approach.  That is, we 



can combine low-level array operations to easily build 
efficient high-level operations.  The choice of 1-D array 
objects was for convenience; [5] shows how the Psi calculus 
concepts being demonstrated apply to multi-dimensional 
arrays. 
     We run our experiments on a single Power PC 7400 (G4) 
processor with a 450 MHz clock residing in a DY4 CHAMP-
AV quad G4 processor board and running the VxWorks 
operating system.  The processor has 64KB of L1 cache, 
which is split into 32KB each for data and instructions, 2MB 
of L2 cache, and access to 128MB of local SDRAM, of which 
it is configured to use 64 MB.  To compile our tests, we use a 
GCC 2.95.4 Solaris to G4/VxWorks cross-compiler, which is 
an unofficial release based on GCC 2.95.3, but with support 
for the C/C++ AltiVec extensions, and some patches to 
improve VxWorks compatibility. 
 

Results 
 
Although we do not have experimental results for convolution 
as of the time of this writing, we will be presenting those 
results in our full presentation.  We do at this time have 
experimental results for several low-level 1-D index 
manipulation operations, including take, drop, and reverse.  
Reverse simply reverses a 1-D array.  Take(N, A) , where A is a 
1-D array of length M, and N is a non-negative integer, results 
in a 1-D array of length N, whose contents are the first N 
elements of A.  Drop(N, A)  under the same assumptions results 
in a 1-D array of length M-N, whose contents are the last M-N 
elements of A.  Take and drop are both used in composing the 
convolution operation.  We present experimental results here 
for the expression: 
A=reverse(take(M-M/3,drop(M/4, reverse(B)))), where B is 
length M.  Figure 1 shows the performance of all 3 
implementations (hand coded loop, enhanced PETE, naïve 
C++).

 
The horizontal axis is log2 M.  The vertical axis is the average 
time of each implementation to perform the operation, 
normalized to the average time of the hand coded loop 

implementation.  Note that the loop and expression template 
implementations significantly outperform the naïve C++ 
approach, with the latter taking roughly 200 times as long as 
the loop implementation for small (M<16) arrays.  Figure 2 
compares only the performance of the hand coded loop and 
enhanced PETE implementations.  

 
Note that the enhanced PETE implementation incurs some 
overhead, which is apparent for small vector sizes (for this 
expression, the expression template approach takes over twice 
as long as the hand coded loop when M=8).  This overhead is 
mostly due to the fact that the expression must go through 
several transformation steps prior to processing, and since the 
arrays are dynamically sized, some of these steps must be 
performed at run time.  However, there are ways to mitigate 
this overhead.  We will discuss and present results obtained 
from 2 of these: a setup step to be performed at system startup 
time for each subsequent assignment in the system, and static 
(compile time) sizing of array variables.  Each approach has 
advantages and disadvantages, but both should largely 
eliminate the remaining overhead in the enhanced PETE 
implementation of the index manipulation operations 
compared to the hand-coded loop implementation. 
 

Conclusions and Future Work 
 
As is the case with element-wise algebraic array operations, 
expression templates can be used to implement array index 
manipulation operations with an efficiency that rivals that of 
hand coded loop implementations, while providing the high 
level of abstraction of naïve C++ implementations.  We have 
demonstrated how to achieve this by augmenting PETE to 
implement Mullin’s Psi Calculus reduction rules for a 1-D 
array class.  In this abstract, we have presented results 
demonstrating that such an implementation performs nearly as 
well as a hand coded loop implementation, and far 
outperforms a naïve C++ implementation, for low-level index 
manipulation operations.  In our full presentation, we will 
show results for a convolution of two 1-D vectors, which 
should confirm our initial results.  Future work will include 



extending this work to multi-dimensional distributed arrays, 
and extending this work beyond single expressions to 
implement broader program block optimizations, as described 
in [7]. 
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