VSIPL++: Intuitive Programming Using C++ Templates

Mark Mitchell Jeffrey D. Oldham
2002 Aug 22

Submission Information

Author Information:

Mark Mitchell Jeffrey D. Oldham
CodeSourcery, LLC CodeSourcery, LLC

9978 Granite Point Court 938 Clark Ave #34

Granite Bay, CA 95746 Mountain View, CA 94040
916.791.8304 (voice) 650.968.0708 (voice)
916.914.2066 (fax) 916.914.2066 (fax)
mark@codesourcery.com oldham@codesourcery.com
citizen of USA citizen of USA

first, corresponding, presenting author

U.S.-Only Session:no
Poster: no
Topic Areas:

¢ software architectures, reusability, scalability, and standards
¢ algorithm mapping to high performance architectures
e middleware libraries and application programming interfaces

Abstract

VSIPL++ is a high-performance C++ toolkit for vector and signal processing applications. Building
on the successful Vector, Signal, and Image Processing Library (VSIPL) standard (a C standard for
similar applications), VSIPL++ adds additional features including:

direct support for parallel computation,

simpler syntax, improved type-checking, and other improvements to reduce validation and
verification (V&V) costs,

support for specialized data storage formats, and

potentially higher performance.

Programs built with VSIPL++ will be as fast or faster as hand-coded VSIPL programs, but
require less effort to build and will automatically work in both serial and parallel environments.
VSIPL++ includes all of VSIPL's functionality, i.e., vector and matrix operations, signal processing
functions, and linear algebra.

VSIPL++ uses C++ to reduce the burden on programmers. For example, amiatcreated by
invoking theMatrix constructor, which automatically handles all necessary memory allocation.

VSIPL++ also directly supports data-parallel programming. For example, a matrix having en-
tries equal to the cosine of matriks entries is denotedos(m) . The sum of two matrices can
be assigned to a third using a data-parallel assignmént= m1 + m2but the logically invalid
sum of aVector and aMatrix yields a compile-time error. The same syntax can be used to
manipulate scalars, vectors, matrices, and tensors.

In VSIPL++, in contrast to VSIPL, data may be stored in formats other than simple arrays of
contiguous memory. Programmers use logitalvsof data. These views are manipulated as if they
were contiguous arrays. Choosing an alternative storage format does not require the programmer
to change the code that manipulates the memory. In addition, programmers may superimpose more
than one view on the same data. For example, a programmer can have both a one-dimensional
(vector) view and a two-dimensional (matrix) view of the same data. Alternative storage formats
can reduce the use of memory (e.g., by storing only non-zero values), improve performance (e.g.,
by computing values lazily), or improve reliability (e.g., by replicating values and then using voting
to determine the value stored).

VSIPL++ supports distributed computation using the single-program, multiple data model. Pro-
grammers specify data distribution when containers are created, but all other portions of the program
are written the same for serial and parallel programs. VSIPL++ automatically distributes the com-
putations across processors. This style of programming greatly reduces validation and verification
costs by permitting debugging on serial machines and by confining the complex, error-prone task of
writing parallel code to the toolkit itself.

VSIPL++ makes use of C++ templates to provide intuitive syntax while generating highly ef-
ficient code. For example, the use of novel data storage formats does not impose any additional
overhead on programs that use traditional data formats, nor do users of the novel data storage for-
mats pay additional costs relative to hand-coded programs using the traditional data formats.

A draft version of the VSIPL++ specification is available and work on a reference implementa-
tion is underway. We anticipate that the complete specification and a complete reference implemen-
tation will be available by the end of 2003.

