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n The Lincoln Laboratory Grid (LLGrid) project was initiated to provide 
Laboratory staff with an effective way to exploit cluster computing as a solution to 
the demand for computational power in large-scale algorithm development, data 
analysis, and simulation tasks. Because sensor capabilities and demands continue 
to increase, the dataset sizes and algorithm complexities of today’s challenging 
applications have outgrown the processing capabilities of single workstations. 
Cluster computing technology, where a networked set of workstations is used as 
a parallel processor, can provide the throughput and storage demands of these 
applications. Programming a cluster, however, requires algorithm developers to 
become parallel programmers, which is difficult, time-consuming, and distracting. 
To allow a large research community (who primarily use MATLAB) to exploit 
cluster computing, we have developed a parallel programming toolbox called 
pMatlab, which consists of a library of objects and routines for distributing 
numerical arrays onto multiple processors, and then carrying out parallel 
computations on these distributed arrays. A typical MATLAB programmer can 
use pMatlab to convert a program to a parallel implementation in a few hours or 
days, and can then run the application on a cluster. Since most Laboratory users 
do not have access to a cluster, the LLGrid enterprise cluster computing system 
was developed to provide users with desktop access to these resources. The LLGrid 
allows a pMatlab program to be run on a remote cluster as simply as it is to run 
a MATLAB program on the desktop. Several LLGrid satellite clusters dedicated 
to specific programs have also been established. To quantify the effectiveness 
of pMatlab on the LLGrid, we present pMatlab High Performance Computing 
Challenge benchmark results, which evaluate high-performance computing 
systems over a range of computations. Our results, including user experiences, 
illustrate the increased user productivity and high computational performance 
of pMatlab on the LLGrid. We conclude with the future directions of both the 
LLGrid project and related advanced software developments.

Since the earliest days of Lincoln Laborato-
ry, innovation in interactive high-performance 
computing has played a central role in the 

Laboratory mission. Computers like the Whirlwind, 
the Memory Test Computer, the TX-0, and the TX-2 
brought breakthroughs in simulation, sensor process-
ing, computer architecture, system components, and 
human-computer interaction. These pioneering Labo-

ratory technologies led to several spin-off computer 
companies, one of the most notable being Digital 
Equipment Corporation (DEC), the developer of the 
minicomputer. In the 1970s and early 1980s, mini-
computers such as the DEC PDP- and VAX-series 
machines found extensive use at the Laboratory for 
applications ranging from simulation and data analy-
sis to algorithm development and real-time process-
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ing. When even higher performance was needed, the 
Laboratory had access to the MIT supercomputing 
facilities. 

Starting in the mid-1980s, the advent of the work-
station and the personal computer allowed Lincoln 
Laboratory staff to carry out—at their desktops—com-
putations that previously would have been relegated to 
shared minicomputers or even supercomputers. This 
convenient, interactive computing environment has 
proved to be revolutionary and has continued to great-
ly enhance the ability of Laboratory staff to carry out 
algorithm development and data analysis tasks. Today, 
desktop computers, be they Intel-based personal com-
puters or any of the many high-end workstations from 
companies such as Sun or Hewlett-Packard, have be-
come indispensable tools for scientists and engineers. 
Through Moore’s Law, which has accurately predicted 
the exponential growth in processing in the last few 
decades, the typical Laboratory staff member has an 
enormous amount of dedicated computing power and 
storage capacity at his or her disposal. At the same 
time, interactive programming environments such as 
MATLAB have helped to increase individual produc-
tivity and prototyping capabilities enormously [1]. 

The situation is changing, however. The growth 
rate in computing power is beginning to decrease. The 
High Performance Embedded Computing (HPEC) 
Workshop at Lincoln Laboratory in 2004 explored 
some of the implications of this slowdown. Chip de-
signers are facing fundamental difficulties in increas-
ing microprocessor clock rates past the 4 to 5 GHz 
regime. The development of smaller-geometry fabri-
cation processes has also slowed. Power management 
is becoming a critical concern, not just for embedded 
systems (where it has always been important), but for 
commercial server systems as well. The impact of this 
circuit-level crisis at the computer system level is that 
the improvement rate for single processor systems has 
slowed from a doubling rate of eighteen months to a 
doubling rate of about once every three years. 

At the same time, the signal processing, simulation, 
and data processing tasks that Laboratory staff mem-
bers are addressing have required a steady increase in 
computational power and digital storage. This increase 
can be traced to a few trends. First, sensors have been 
improving at a fast pace. For example, state-of-the-art 

charge-coupled device (CCD) arrays have grown from 
a few thousand to several million pixels in the last few 
decades. Sensor bandwidths have also increased dra-
matically. Synthetic aperture radars (SAR) operating at 
1 to 2 GHz instantaneous bandwidth have been dem-
onstrated. Ground moving-target indication (GMTI) 
radars for space-based and airborne surveillance sys-
tems are being developed that will have bandwidths 
approaching upwards of 1 GHz. Ultra-wideband an-
alog-to-digital converters (ADC) operating at over 5 
GHz are on the drawing table. This ADC technology 
is the harbinger of even wider-bandwidth radar sys-
tems to come. 

In addition, sensor signal and image processing has 
become increasingly sophisticated. Advanced multidi-
mensional signal processing algorithms are finding ap-
plication in several areas, such as space-time adaptive 
processing for GMTI radars [2], and high-definition 
vector imaging (HDVI) for SAR systems [3]. Com-
munication systems are employing advanced tech-
niques such as adaptive processing and turbo decoding 
with iterative belief propagation [4]. To compound 
matters, sensor networking and networked decision 
support systems have emerged as important research 
areas. For these applications, not only do individual 
sensor streams need to be processed, but new multi-
sensor data fusion, tracking, intelligence gathering, 
reasoning, and decision support algorithms are being 
prototyped in the lab and tested in the field. 

The net effect of these different trends is that many 
of today’s applications are dealing with orders of mag-
nitude more data at all time scales, from high-band-
width raw sensor data to data archived over days or 
even months. The computational needs for processing 
these large datasets have increased commensurately, 
and are now outstripping the capabilities of individual 
workstations.

To address these emerging requirements, cluster 
computer systems have begun to find use in many 
Lincoln Laboratory programs. A computing cluster 
is built by amassing a number of high-performance 
commodity computer servers, connecting them with 
a computer network, and managing them as one large 
entity rather than as individual computers. Often, 
high-capacity disks are included in the configura-
tion. Most clusters, following in the footsteps of the 
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original Beowulf clusters that were pioneered by C. 
Reschke et al. [5] at NASA, use a variant of the open-
source Linux operating system. The main attraction 
of clusters is that they can be custom configured by 
using inexpensive hardware and open source software 
to economically deliver high computational perfor-
mance. A less appealing aspect is that programming 
a cluster with conventional techniques requires a user 
to become a parallel programmer. This requirement is 
particularly cumbersome for scientists and engineers 
who are mostly interested in using highly productive 
development environments such as MATLAB. 

Recognizing the programming challenge presented 
by clusters, the Embedded Digital Systems group be-
gan to explore ways to effectively use MATLAB on 
clusters. In 2002, the group developed the MatlabM-
PI toolbox [6], which provided MATLAB users with a 
way to parallelize their codes by using message passing 
based on the Message Passing Interface (MPI) standard 
[7]. This toolbox was quickly adopted both inside and 
outside the Laboratory. For MATLAB programmers 
willing to write explicit parallel codes, MatlabMPI has 
proven to be a powerful tool. 

Not all MATLAB users, though, want to be paral-
lel programmers. Recognizing this, in 2003 the Em-
bedded Digital Systems group began the development 
of pMatlab [8], a parallel MATLAB toolbox that can 
be used to quickly convert serial MATLAB programs 
into parallel programs. MatlabMPI requires explicit, 
message-based, parallel code. pMatlab, on the other 
hand, uses a form of implicit parallelism borrowed 
from the real-time Parallel Vector Library (PVL) [9]. 
With pMatlab, the user defines distributed arrays and 
gives these arrays maps that specify how their data are 
spread across the nodes of a parallel computer. The 
arrays then coordinate data distribution, distributed 
computation, and synchronization, so that the MAT-
LAB programmer does not need to explicitly deal 
with these parallel programming details. A MATLAB 
programmer can learn how to use the basic pMatlab 
toolbox library in a few hours. After that, converting a 
MATLAB code to a parallel code typically takes a few 
hours or at most a few days. 

Out of the Beowulf cluster computing technology, 
the concept of grid computing has gained momen-
tum [10]. Grid computing is an approach to provid-

ing computational resources to a user base, where the 
computers are located remotely but are as accessible 
and available as the electric power grid. Analogous 
to the electric grid, a computational grid should be: 
(1) highly reliable and accessible; (2) available for use 
anywhere in the Laboratory; and (3) easy to adopt and 
use. Connecting to the grid should be supported by a 
utility service and a user should be able to use the grid 
without having to change the way he or she works.

Grid computing allows users to share large-scale 
distributed and parallel computing resources to in-
crease the throughput of computationally intensive 
programs. A key notion in grid computing is that 
computational resources should be provided to users 
‘on demand.’ A user should not have to wait to get 
the resources to run a program. Moreover, the system 
should interact with the user to provide feedback on 
program status, and the turnaround time for program 
execution should be short enough to allow frequent, 
iterative code development. In short, using a cluster in 
an on-demand manner should be as much as possible 
like using a dedicated personal computer, except that 
programs requiring much greater computational pow-
er and storage could be handled in a timely manner. 

In 2003, the Lincoln Laboratory Grid (LLGrid) 
computing team was formed in recognition that high-
performance computing clusters were becoming very 
affordable, to the point that grid computing could be 
cost effective within the Laboratory. Numerous proj-
ects, such as NetSolve [11] and Legion [12], had al-
ready developed the software infrastructure to help 
make grid computing concepts practical. These grid 
computing technologies, however, tended to require 
steep learning curves. The grid systems they supported 
drew a strong distinction between the users’ computers 
and the grid computing resources. Thus, while a user 
could get the quick response and high-performance 
benefits of on-demand computing, the human-com-
puter interface was quite different and more difficult 
to use when interacting with the grid system. This is-
sue of usability was one of the principal concerns of 
the Lincoln Laboratory grid team. As we explain later 
in this article, the team devised a novel way to make 
the user’s computer part of the overall grid, thus mak-
ing it much more natural to interact with the grid 
software infrastructure.
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 The team, which currently draws its membership 
from the Information and Communication Services 
group and the Embedded Digital Systems group, sur-
veyed Lincoln Laboratory staff members to determine 
the user perspective on high-performance computing 
needs. The community reaffirmed that Laboratory 
researchers are unwilling to exploit high-performance 
computing resources if they are not interactive and 
they are difficult to use. 

After reviewing the user survey, as well as available 
grid technologies, the LLGrid team focused on the 
following design targets for the LLGrid: (1) first-time 
user setup should be entirely automated and take less 
than ten minutes; (2) using MATLAB on the grid 
should be like running a MATLAB job on a personal 
computer; (3) the grid must be compatible with Win-
dows, Linux, Solaris, and MacOS X operating sys-
tems, because of the diversity in the technical activities 
and computer platforms at the Laboratory; and (4) 
the grid should require only a few system administra-
tors to maintain it.

The challenge of the LLGrid project was to develop 
an on-demand grid computing capability for high-
performance computing that would satisfy these de-
sign targets. To enable easy MATLAB programming 
on a grid, the LLGrid team took the opportunity to 
match up the MatlabMPI toolbox with open-source 

resource management software, so that multiple grid 
users could simultaneously run MatlabMPI programs. 
This concept was later extended to include the pMat-
lab toolbox, and the resulting system, known as grid-
Matlab, now serves as the principal bridge connecting 
parallel MATLAB users to the grid.

Figure 1 illustrates the current version of LLGrid, 
which is housed in F Building at Lincoln Laboratory. 
The cluster is comprised of 460 compute and service 
processors. Users have access to the grid through their 
desktop personal computers across the Lincoln local 
area network (LLAN). The cluster also has a network 
storage system that provides up to 36 terabytes of stor-
age for large-scale data analysis and simulations. 

A significant percentage of Laboratory staff have 
used this system and have already demonstrated the 
value of the grid computing. Figure 2 shows a sam-
pling of the Laboratory research and development 
programs that have benefited from using the LLGrid. 
The simulation codes developed in these programs 
have used thousands of hours of CPU time. It is fair 
to say that without the LLGrid, neither the size nor 
the quantity of simulations run by these codes would 
have been possible in the short time frame that today’s 
research projects demand. 

Grid computing research and development has 
been steadily on going since the original Lincoln 

FIGURE 1. The Lincoln Laboratory Grid (LLGrid) system, consisting of Linux compute nodes and Linux 
service nodes. A user’s computer is connected to the LLGrid via the Lincoln local area network (LLAN). 
The gridsan network storage delivers a common file system to the LLGrid cluster and all of the users. 
Currently, the LLGrid consists of 460 compute processors, for an aggregate peak throughput of 1.43 tril-
lion floating point operations per second (teraflops), and 36 terabytes of storage capacity.
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Laboratory a-Grid was launched in 2004. Much ef-
fort has focused on developing better scheduling and 
management tools. As these tools have matured and 
improved, the grid cluster has increased from 160 pro-
cessors to its current size at 460 processors. Another 
major expansion to the LLGrid cluster is planned for 
2007; this expansion will make it one of the hundred 
largest computers in the nation. 

Improvements to the pMatlab toolbox have also 
been the focus of some innovative research and de-
velopment. In the current version of pMatlab, the 
programmer must still specify how the arrays are to 
be mapped onto the parallel or distributed machine. 
This mapping task can be quite challenging, especially 
as codes become more complex. To address this, the 
pMatlab library is currently being augmented with au-
tomated mapping capabilities, so that the user merely 
has to specify which parts of the code to make parallel, 

and the library determines and builds a set of highly 
efficient parallel maps [13]. Another promising re-
search area has been in the use of disk space as virtual 
memory for parallel MATLAB programs [14, 15]. By 
integrating out-of-core software techniques with paral-
lel processing, extremely large datasets can be handled 
in a way that provides both high performance at large 
scales and programming ease of use.

The remainder of this article discusses the LLGrid 
project in more detail. First we describe the parallel 
MATLAB toolboxes—MatlabMPI and pMatlab—
and we present benchmark results demonstrating the 
high performance of the parallelized programs. Then 
we discuss the LLGrid cluster, its development road-
map, and its software infrastructure. User experiences 
and lessons learned are a key focus of the discussion. 
Finally, we present some exciting future plans and re-
search projects.

FIGURE 2. Examples of Lincoln Laboratory programs benefiting from the LLGrid. The Laboratory specializes in sen-
sor signal processing, and much of the work involves gaining information and insight from a huge variety of sensors 
in a large number of research projects. This level of effort involves extraordinary amounts of computation capability. 
Among the wide variety of applications on which Laboratory engineers and scientists work are radar algorithm de-
velopment for weather sensing, application-specific integrated circuit (ASIC) simulation, and hyperspectral imaging. 
Each example in the figure gives a rough estimate of the number of CPU hours that a typical simulation executes for 
each of the applications. 

Nonlinear equalization ASIC simulation
750 CPU hours per simulation

Hyperspectral imaging
250 CPU hours per simulation

Weather radar algorithm development
10 CPU hours per simulation
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parallel matlab toolbox

MATLAB has emerged as one of the predominant lan-
guages of technical computing. Its popularity for data 
analysis, simulation, and modeling is largely due to the 
expressiveness of the language. Additionally, MATLAB 
provides its users—who tend to be engineers and sci-
entists—with powerful graphics to visualize complex 
multidimensional datasets. The high-level language 
of MATLAB allows users to concentrate on their core 
competency and spend less effort on computer-sci-
ence–related implementation details. It is common 
for scientists and engineers to test the validity of data 
processing algorithms or physical simulations by em-
ploying larger datasets, higher-resolution models, or a 
broader range of input parameters. This need for great-
er fidelity to physical reality causes execution times to 
reach hours or even days. Thus a parallel processing 
capability that provides good speed up in algorithm 
execution without sacrificing the ease of programming 
is highly beneficial. pMatlab seeks to provide this ca-
pability by implementing standard Parallel Global Ar-
ray Semantics (PGAS)*, as illustrated in Figure 3. This 
figure shows the distinction between the pure PGAS 
approach and the fragmented PGAS approach, which 
is discussed in more detail later in the article.

The core data structures in MATLAB are ar-
rays—vectors, matrices, and higher-order arrays. To 
keep the same functionality in a parallel program-
ming paradigm, the core data structures in pMatlab 
are distributed arrays and maps, which are discussed 
in greater detail later. These data structures are illus-
trated in the pMatlab code fragment shown in Figure 
4. The code fragment in this figure implements the 
STREAM benchmark [16], which is part of the High 
Performance Computing (HPC) Challenge bench-
mark suite, discussed in detail later in the article. 
STREAM, which is commonly used to determine the 
performance of parallel computers, is a simple paral-
lel code that uses basic vector operations, such as scale 
and add, to measure main memory bandwidth to each 
processor in the parallel computer. STREAM requires 

no communication between processors or data re-
distribution, and is thus referred to as embarrassingly 
parallel. Distributed arrays allow the serial STREAM 
program to be transformed quickly into a parallel pro-
gram by simply adding a map object to selected arrays. 
The map describes how the distributed array is to be 
broken up among multiple processors. Additionally, 
pMatlab also abstracts the communication layer from 
the application developer. While writing a parallel 
MATLAB program with pMatlab, the user does not 
have to worry about parallel programming concepts 
such as deadlocks, barriers, and synchronization.

Related Work

Parallel MATLAB has been an active area of research 
for a number of years and many different approaches 

FIGURE 3. Parallel global array semantics (PGAS). The top 
figure illustrates pure PGAS. Matrix A is distributed among 
Np processors, where each processor is represented by a dif-
ferent color. The convention of using different colors to illus-
trate different processors is used throughout this article. El-
ement i, j is referenced on all the processors. In pure PGAS, 
the index i, j is a global index that references the same ele-
ment in the global array, regardless of the processor that per-
forms the reference (on Processor 1 that element is local; on 
all other processors it is remote). The lower figure illustrates 
fragmented PGAS. Here each processor references element 
i, j local to the processor; thus each processor references a 
different element in the global matrix. pMatlab supports both 
pure and fragmented PGAS.

* The acronym PGAS also commonly refers to Parallel Global Address 
Space. Throughout this article, however, PGAS always refers to Parallel 
Global Array Semantics.

A(i, j)
Processor 0

A(i, j)
Processor 1

A(i, j)
Processor …

A(i, j)
Processor Np–1

A

PGAS

A.local(i, j)
Processor 0

A.local(i, j)
Processor 1

A.local(i, j)
Processor …

A.local(i, j)
Processor Np–1

A

Fragmented PGAS
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have been developed (see [17] for a comprehensive 
survey). These different approaches can be roughly 
divided into three categories: message passing, client/
server, and global arrays.

The message passing approach [6, 18] requires the 
user to explicitly send messages within the code. These 
approaches often implement a variant of the Message 
Passing Interface (MPI) standard [7]. Message pass-
ing allows any processor to directly communicate 
with any other processor and provides the minimum 
required functionality to implement any parallel pro-
gram. Users who are already familiar with MPI find 
these approaches powerful. However, the learning 
curve is steep for the typical user because explicit mes-
sage passing significantly lowers the level of abstraction 
and requires users to deal directly with deadlocks, bar-
riers, and other low-level parallel programming con-
cepts. In addition, the impact on code size is signifi-
cant. Serial programs converted to parallel programs 
with MPI typically increase in size by 25% to 50%. 
In contrast, PGAS approaches typically increase the 
code size by only about 5% [19]. In spite of these dif-
ficulties, a message passing capability is a requirement 
for both the client/server approach and the global ar-
rays approach. Furthermore, message passing is often 
the most efficient way to implement a program; there 
are certain programs with complex communication 
patterns that can be implemented only with direct 
message passing. Thus any complete parallel solution 
must provide a mechanism for accessing the underly-
ing messaging layer. 

Among the available MATLAB message passing 

implementations, MatlabMPI is currently the most 
popular implementation with thousands of users 
worldwide (see the section on the parallel MATLAB 
communication interface for a more detailed discus-
sion on MatlabMPI). More recently, the incorporation 
of MPI into The MathWorks’ Distributed Computing 
Toolbox (DCT) [20, 21] makes message passing avail-
able to a much broader range of users.

Client/server approaches [22, 23, 20] use MAT-
LAB as the user’s front end to a distributed library. For 
example, Star-P [22] keeps the distributed arrays on a 
parallel server, which calls the necessary routines from 
parallel libraries such as ScaLAPACK and FFTW. 
These approaches often provide the best performance 
once the data are transferred to the server. However, 
these approaches are limited to those functions which 
have been specifically linked to a parallel library and 
require the users to install additional libraries and set 
up a dedicated server to execute the libraries. We in-
clude DCT in this category, although in this instance 
the back-end server is MATLAB running on each pro-
cessor, and the user is responsible for breaking up the 
calculation into embarrassingly parallel tasks that can 
be independently scheduled.

pMatlab, Star-P [22], and Falcon [24] fall into the 
third category, the global arrays approach, or PGAS, 
which provides a mechanism for creating arrays that 
are distributed across multiple processors. Global ar-
rays appear in other languages such as High Perfor-
mance Fortran [25, 26] and Unified Parallel C [27], 
as well as in many C++ libraries such as POOMA 
[28], GA Toolkit [29], PVL [9], and the C++ bind-

FIGURE 4. Highlights of the STREAM benchmark code. The first three lines set the various constants required by the pro-
gram, such as the number of processors Np and the size of the row vector. The next line creates a map, which will cause the 
second dimension of a distributed array to be broken up equally among all the processors. The following three lines use 
this map to create three distributed row vectors. The last line performs the basic STREAM triad arithmetic operations in 
parallel. No communication is required in this example because arrays A, B and C are all mapped identically.

A

=

B

+

s × C

Np – 110 …

Np – 110 …

Np – 110 …

Np = pMATLAB.comm_size;
N  = 32;
s  = 3.14;

ABCmap = map([1 Np],{},0:Np-1);
A = zeros(1,N,ABCmap);
B =  rand(1,N,ABCmap);
C =  rand(1,N,ABCmap);

A(:,:) = B + s*C;

% Set number of processors.
% Set size of row vector.
% A scalar value.

% Create a map.
% Distributed zeros array.
% Distributed random array.
% Distributed random array.

% Local scale and add.
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ing of the Vector Signal and Image Processing Library 
(VSIPL++) [9]. The global array approach allows the 
user to view a distributed object as a single entity, as 
opposed to multiple pieces as is the case with message 
passing. This approach allows operation on the arrays 
as a whole or on local parts of the arrays. Addition-
ally, these libraries are compatible with MPI. Parallel 
VSIPL++ is implemented in C++. The GA Toolkit 
is implemented in a number of languages, including 
Fortran, C, and C++. 

pMatlab supports both pure PGAS and fragmented 
PGAS programming models, as illustrated in Figure 
3. The pure PGAS model presents an entirely global 
view of a distributed array. Specifically, once they are 
created, distributed arrays are treated the same as non-
distributed arrays. When using this pure programming 
model, the user never accesses the local part of the ar-
ray, and all operations (such as matrix multiplies, fast 
Fourier transforms, or convolutions) are performed on 
the global structure. The benefits of pure PGAS are 
ease of programming and the highest level of abstrac-
tion. The drawbacks include the need to implement 
parallel versions of serial operations and library perfor-
mance overhead. 

Fragmented PGAS maintains a high level of ab-
straction but allows access to local parts of the arrays. 
Specifically, a distributed array is created in the same 
manner as in pure PGAS; however, the operations 
can be performed on just the local part of the array. 
Later, the global structure can be updated with locally 
computed results. This approach allows greater pro-
gramming flexibility; at the same time it does not re-
quire function coverage or implementation of parallel 
versions of all existing serial functions. Furthermore, 
fragmented PGAS programs often achieve better per-
formance by eliminating the library overhead on local 
computations.

pMatlab is a unique parallel MATLAB implemen-
tation for a number of reasons. pMatlab supports both 
pure and fragmented PGAS programming models, 
and allows combining PGAS with direct message pass-
ing for optimized performance. While pMatlab does 
use message passing in the library routines, a typical 
user does not have to explicitly incorporate messages 
into the code. pMatlab supports embarrassingly paral-
lel computation but is not limited to it. In addition, 

pMatlab does not link in any external libraries, nor 
does it compile the language into an executable. Our 
library is implemented entirely in MATLAB. This de-
sign significantly reduces the size of the library and has 
allowed pMatlab to become the most complete imple-
mentation of PGAS available in any language.

pMatlab Interface and Architecture Design

The primary challenge in implementing a parallel 
computation library is how to balance the conflicting 
goals of high performance, ease of use, and ease of im-
plementation. With respect to pMatlab, we have spe-
cifically defined each of these design goals in a measur-
able way, which are listed in Table 1. The performance 
metrics, typical of those used throughout the high-
performance computing community, primarily look at 
the computation and memory overhead of programs 
written with pMatlab relative to serial programs writ-
ten using MATLAB and parallel programs written us-
ing C with MPI. The metrics for ease of use and ease 
of implementation are derived from the software en-
gineering community [30–32], and they look at code 
size, programmer effort, and required programmer ex-
pertise. These metrics are not perfect, but they are use-
ful tools for measuring progress toward these goals. In 
the rest of this section we discuss the particular choices 
made in pMatlab to satisfy these goals.

Ease of use. The first step in writing a parallel pro-
gram is to start with a functionally correct serial pro-
gram that achieves the best performance possible. The 
conversion from serial to parallel requires the user to 
add new constructs to their code. pMatlab adopts a 
separation-of-concerns approach to this process which 
seeks to make functional programming and mapping 
a program to a parallel architecture orthogonal. A se-
rial program is made parallel by adding maps to arrays. 
Maps contain information only about how an array is 
broken up onto multiple processors, and the addition 
of a map should not change the functional correct-
ness of a program. A map, illustrated in Figure 5, is 
composed of three fundamental parts: a grid, specify-
ing how each dimension is partitioned; a distribution, 
specifying a block, cyclic, or block-cyclic partitioning 
(discussed in the later section on maps and distribu-
tions); and a list of processors, specifying which pro-
cessors actually hold the data. (Note that the use of 
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the word “grid” in this context is not related to grid 
computing.)

The next step in writing a parallel program is im-
plementing communication. Perhaps the largest ben-
efit of PGAS is the ability to abstract complex message 
passing away from the user. More specifically, redistri-
bution between any two distributed arrays in pMatlab 
is accomplished with the ‘=’ operator. In the STREAM 
benchmark example shown in Figure 4, the ‘=’ opera-

tor is used in the statement

	 A(:,:)	=	B	+	s*C , 

but since the arrays A, B, and C all have the same 
map, no communication is required. The overloaded 
‘=’ operator in pMatlab figures this out and correctly 
performs a simple assignment of the local data on the 
right hand side to the local data on the left hand side. 

A more complex example is the HPC Challenge 

* Metrics were defined for each of the high-level pMatlab design goals: ease of use, performance, and ease of 
implementation. These metrics led to specific approaches for addressing the goals in a measurable way.

Table 1. pMatlab Design Goals *

	 Goal Ease of use

 Metrics Time for a user to produce a well-performing parallel code from a serial code.

  Fraction of serial code that has to be modified.

  Expertise required to achieve good performance.

 Approach Separate functional coding from mapping onto a parallel architecture.

  Abstract message passing away from the user.

  Ensure that simple (embarrassingly) parallel programs should be simple to express.

  Provide a simple mechanism for globally turning pMatlab constructs on and off.

  Ensure backward compatibility with serial MATLAB.

  Provide a well-defined and repeatable process for migrating from serial to parallel code.

	 Goal High performance

 Metrics Execution time and memory overhead as compared to serial MATLAB, the underlying MatlabMPI  
  communication library, and C+MPI benchmarks.

 Approach Use underlying serial MATLAB routines wherever possible (even if it means slightly larger user code).

  Minimize use of overloaded functions whose performance depends on how distributed arrays are mapped.

  Provide a simple mechanism for using lower-level communication when necessary.

	 Goal Ease of implementation

 Metrics Time to implement a well-performing parallel library.

  Size of library code.

  Number of objects.

  Number of overloaded functions.

  Functional and performance test coverage.

 Approach Implement a layered design that separates math and communication.

  Leverage well-understood PGAS and data redistribution constructs.

  Minimize the use of overloaded functions.

  Develop a ‘pure’ MATLAB implementation to minimize code size and maximize portability.
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fast Fourier transform (FFT) benchmark shown in 
Figure 6. This benchmark computes the FFT of a 
large one-dimensional (1D) vector. The standard par-
allel algorithm for this benchmark is to transform the 
1D vector into a row-distributed matrix, perform an 
FFT on the rows of the matrix, multiply by a set of 
weights, redistribute into a column-distributed ma-
trix, and perform an FFT on the columns. A key step 
in the process is the redistribution performed by the 
statement

	 Z(:,:)	=	X ,

which determines and executes the Np
2 messages—

where Np is the number of processors—that need to 
be sent to complete this operation. 

PGAS enables complex data movements to be ex-
pressed compactly without making parallelism a bur-
den to code. For example, removing the maps from 
either the STREAM or FFT example returns the pro-
gram to a valid serial program that simply uses stan-
dard built-in operations. This feature is a direct result 
of the orthogonality of mapping and functionality, and 
allows the pMatlab library to be turned off by simply 
setting all the maps equal to the scalar value of 1. This 
ability to turn the library on and off is a key debug-
ging feature and allows users to determine whether the 
bugs are from problems in their serial code or due to 
their use of the pMatlab constructs.

All of these steps—making the code parallel, man-
aging the communication, and debugging—need to 
be directly supported in the library. Our experience 
with many pMatlab users has resulted in a standard-
ized and repeatable four-step process, summarized 
in Figure 7, for going quickly from a serial code to a 
well-performing parallel code. This four-step process 
is important for a user to learn and follow, because the 
natural tendency of new pMatlab users is to add par-
allel functions and immediately attempt to run large 
problems on a large number of processors.

The four-step process begins by adding distributed 
matrices to the serial program, but then assigning all 
the maps to a value of 1 and verifying the program 

FIGURE 5. Anatomy of a map. A map for a numerical array 
is an assignment of blocks of data to processing elements. 
It consists of a grid (specified in this case as a 2 × 2 arrange-
ment), a distribution (the braces { } specify that the default 
block distribution should be used in this case), and a proces-
sor list (the array is mapped to processors 0, 1, 2, and 3).

FIGURE 6. Highlights of the fast Fourier transform (FFT) benchmark code. The first two lines set the various constants required 
by the program, such as the number of processors Np and the size of the matrix. The next two lines create two map objects for 
breaking the matrix up into rows and into columns, and the following two lines use the maps to create two matrices. The subse-
quent four lines execute an FFT on the rows, multiply the data by a set of local pre-computed weights, redistribute the data (us-
ing the ‘=’ operator) into the matrix broken up by columns, and then perform an FFT on the columns.

P0

P1

P2

P3

A =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Grid specification together
with processor list describe
where the data are distributed.

mapA = map( [2 2], {}, 0:3 );

Distribution specification
describes how the data are
distributed (default is block).

A = zeros(4,6,mapA);

MATLAB constructors 
are overloaded to take
a map as an argument, 
and return a dmat,
a distributed array. 

1. Np = pMATLAB.comm_size;
2. P = 2^10;   Q = 2^10;

3. Xmap = map([Np 1],{},0:Np-1);
4. Zmap = map([1 Np],{},0:Np-1);
% Create complex global arrays X and Z for FFT.
5. X = complex(rand(P,Q,Xmap),rand(P,Q,Xmap));
6. Z = complex(zeros(P,Q,Zmap));

7. X = fft(X,[],2);
8. X = X.* W;.
9. Z(:,:) = X;             
10. Z = fft(Z,[]1); 

  % Set number of processors.
  % Set dimensions of array.

         % Row map.
         % Column map.

% FFT rows.
% Multiply by weights.
% Redistribute data.
% FFT columns.

Corner
turn

Np – 1

1

0

Np – 1…10

…

FFT rows FFT columns



• bliss, bond, kepner, kim, and reuther
Interactive Grid Computing at Lincoln Laboratory

VOLUME 16, NUMBER 1, 2006 LINCOLN LABORATORY JOURNAL 175

with Np set equal to 1 on the local machine. The sec-
ond step is to turn on the maps and run the program 
again with Np still set equal to 1, which will verify that 
the pMatlab overloading constructs are working prop-
erly. It is also important to look at the relative perfor-
mance of the first and second steps, as this will indi-
cate if any unforeseen overheads are incurred by using 
the pMatlab constructs. The third step is to run with 
Np greater than 1 on the local machine, which will 
verify that the pMatlab communication constructs are 
working properly. The fourth and final step is to run 
with Np greater than 1 on multiple machines, which 
validates that the remote communication is working 
properly. Only after these four steps have been per-
formed is it worthwhile to attempt to run large prob-
lems on many processors. In addition, it is important 
to always debug problems at the lowest numbered step 
in which they occur.

High Performance. The primary goal of using a par-
allel computer is to improve run-time performance. 
The first step in achieving high performance is to 
minimize the overhead of using pMatlab constructs, 
compared to their serial equivalents. The previous ex-
amples (Figures 4 and 6) show the ideal pure PGAS 
case when all the required functions are overloaded 
to work well with the pMatlab distributed arrays. It 
is impractical (and unnecessary) to provide optimized 
implementations of the approximately 8000 built-in 
functions for every combination of array distributions. 
Instead, we adopt a coding style that uses some frag-
mented PGAS constructs, illustrated earlier in Figure 
3. This style is less elegant but provides strict guaran-
tees on performance. More specifically, distributed ar-
rays are used as little as possible and only when inter-
processor communication is required.

Figure 8 shows examples of the STREAM and FFT 
benchmarks written with fragmented PGAS con-
structs that minimize the use of overloaded functions 
by employing the local and put_local functions (de-
scribed later in the section on parallel support func-
tions). The local function extracts the local part of the 
distributed array and returns a regular MATLAB array 
that will work with any serial MATLAB function. The 
put_local function replaces the local part of a distribut-
ed array with a regular serial MATLAB array. Thus in 
the STREAM and FFT examples the key expressions

	 Alocal	=	Blocal	+	s*Clocal 

and 
	 fft(local(X),[],2)

are guaranteed to have the same performance as the 
equivalent serial function calls, and eliminate the need 
for pMatlab to overload the calls to +, *, and fft. In 
addition to providing a local performance guarantee, 
this style of coding minimizes the potential for acci-
dental communication, which is easy to do with the 
‘=’ operator. This style of coding has proven to be very 
effective, and most users are able to adapt their code 
to this style with minimum effort. In support of this 
style, the pMatlab library also provides serial equiva-
lents of the local and put_local functions so that the 
code will still work if parallel arrays are turned off.

The power of PGAS is its ability to hide underly-
ing communication from the user and eliminate the 
need for writing lengthy and complex message passing 
code. Unfortunately, PGAS constructs are not appro-
priate for all circumstances. There are communication 
patterns that simply would be more efficient if direct 
message passing can be employed. Thus it is impor-

FIGURE 7. The four-step process for going from serial code to parallel code. Step 1 adds distributed matrices to 
the serial program, then assigns all the maps a value of 1 and runs with the number of processors Np set equal 
to 1 on the local machine. Step 2 turns on the maps and runs the program again with Np set equal to 1. Step 3 
runs with Np greater than 1 on the local machine. Step 4 runs with Np greater than 1 on multiple machines. De-
bugging should always be performed at the lowest numbered step where a problem occurs.
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tant to have mechanisms that allow PGAS and the un-
derlying communication constructs to interact easily. 
pMatlab provides this ability by allowing the user to 
directly access the underlying MatlabMPI library and 
its data structures. At any time in the program the user, 
if she or he so desires, can choose to send messages di-
rectly with MatlabMPI. In fact, we have found that 
PGAS and message passing work very well together 
since the PGAS constructs can still be used to quickly 
figure out which data to send and where to send it. 
But this style of programming is recommended only 
for advanced pMatlab programmers, since it requires 
experience with message passing.

Several of the HPC Challenge benchmarks fall into 
the class of codes that do best by allowing some use of 
direct message passing. In the case of the FFT code, 
we have used a special function called transpose_grid 
(see Figure 8) that directly uses MatlabMPI messaging 
to optimally perform the all-to-all communication for 
going from a row-distributed matrix to a column-dis-
tributed matrix. This function is able to use memory 
more efficiently and to optimize the order in which 
messages are sent and received. The transpose_grid 
function replaces the ‘=’ operator, which can incur 
significant overhead. The RandomAccess benchmark, 
described later in the RandomAccess section, requires 
that all processors are able to randomly communicate 
with all other processors. It is a more explicit exam-
ple of using messaging and PGAS together. The HPL 
Top500 benchmark, described in the section on High 
Performance Linpack, requires that one processor be 

able to broadcast to a subset of all the other proces-
sors, which is also most easily dealt with by using di-
rect message passing.

Ease of implementation. The ease of use and high-
performance goals are well understood by the HPC 
community. Unfortunately, implementing these goals 
in a middleware library often proves to be quite costly. 
A typical PGAS C++ library, such as the Parallel Vec-
tor Library (PVL), can be 50,000 lines of code and 
requires several programmers years to implement. 
pMatlab has adopted several strategies to reduce im-
plementation costs. The common theme among these 
strategies is finding the minimum set of features that 
still allow users to write well-performing programs.

One of the key choices in implementing a PGAS 
library is which data distributions to support (see the 
section on maps and distributions). At one extreme 
we can argue that most users are satisfied by 1D block 
distributions. At the other extreme, we can find ap-
plications that require truly arbitrary distributions of 
array indices to processors. We have chosen to support 
all four-dimensional (4D) block-cyclic distributions 
with overlap in pMatlab because the problem of redis-
tribution between any two such distributions has been 
solved a number of times by different parallel comput-
ing technologies (see Appendix A).

The pMatlab ‘=’ operator supports data redistri-
bution between arrays. The next question is what 
other functions to support and for which distribu-
tions. Table 2 shows an enumeration of different lev-
els of PGAS support. The ability to work with the lo-

FIGURE 8. Highlights of optimized STREAM and FFT code. Programs are rewritten with the local and put_local functions to 
minimize the required number of overloaded functions. These programs are guaranteed to provide the same local perfor-
mance as their serial equivalents.

Optimized STREAM code

Np = pMATLAB.comm_size;
N = 32;
s = 3.14;

ABCmap = map([1 Np],{},0:Np-1);
Alocal = local(zeros(1,N,ABCmap));
Blocal = local(rand(1,N,ABCmap));
Clocal = local(rand(1,N,ABCmap));

Alocal = Blocal + s*Clocal;

Optimized FFT code

Np = pMATLAB.comm_size;
P = 2^10;   Q = 2^10;

Xmap = map([Np 1],{},0:Np-1);
X = complex(rand(P,Q,Xmap),rand(P,Q,Xmap));

X = put_local(X, fft(local(X),[],2) .* Wlocal );
Z = transpose_grid(X);
Z = put_local(Z, fft(local(Z),[],1) );
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cal part of a distributed array and its indices has also 
been demonstrated repeatedly. The big challenge is 
overloading all mathematical functions in a library to 
work well with every combination of input distribu-
tions. This capability is extremely difficult to imple-
ment and is not entirely necessary if users are willing 
to tolerate the slightly less elegant coding style associ-
ated with fragmented PGAS. Thus pMatlab provides 
a rich set of data distributions, but a relatively modest 
set of overloaded functions, which are mainly focused 
on array construction functions, array index support 
functions, and the various element-wise operations (+, 
-, .*, ./, …).

The final implementation choice was to imple-
ment pMatlab purely in MATLAB without relying 
on binding to other languages. This choice has mini-
mized code size and maximized portability. For exam-
ple, pMatlab is the most complete implementation of 
PGAS, but it is only about 3000 lines of code and has 
introduced only two new objects (maps and distrib-
uted arrays). pMatlab also runs on any combination of 
heterogeneous systems that support MATLAB, which 
includes Windows, Linux, Mac OS X, and SunOS.

The Parallel MATLAB Toolbox Implementation

The pMatlab library builds upon concepts from PVL 
and Star-P, and uses MatlabMPI as the communica-
tion layer. Figure 9 illustrates the layered architecture 
of the parallel library. In the layered architecture, the 
pMatlab library implements distributed constructs, 
such as distributed matrices and higher dimensional 
arrays. In addition, pMatlab provides parallel imple-
mentations of a select number of functions such as 
redistribution, FFT, and matrix multiplication. How-
ever, providing high-performance parallel implemen-
tations for all possible serial functions and combina-
tions of distributions is impractical. This problem is 
solved by introducing the user to fragmented PGAS 
programming style, as discussed previously, which sig-
nificantly simplifies the task of writing specialized par-
allel routines focused on the user’s particular data sizes 
and data distributions. 

The pMatlab library uses the parallelism through 
polymorphism approach [22]. Monomorphic lan-
guages require that each variable is of only one type; 
on the other hand, in polymorphic languages variables 

Table 2. Parallel Implementation Levels*

	 Data	Level	 Description	of 	Support

 Data0 Distribution of data is not supported [not a parallel implementation]

 Data1 One dimension of data may be block distributed

 Data2 Two dimensions of data may be block distributed

 Data3 Any and all dimensions of data may be block distributed

 Data4 Any and all dimensions of data may be block or cyclicly distributed

	 Operations	Level	 Description	of 	Support

 Op0 No distributed operations supported [not a parallel implementation]

 Op1 Distributed assignment, get, and put operations, and support for obtaining data and  
  indices of local data from a distributed object

 Op2 Distributed operation support (the implementation must state which operations  
  those are)

* Levels of parallel support for data and functions. Note: Support for data distribution is assumed to include 
support for overlap in any distributed dimension. 
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can be of different types and polymorphic functions 
can operate on different types of variables [33]. The 
concept of polymorphism is inherent in the MATLAB 
language; variable types do not have to be defined, 
variable types can change during the execution of the 
program, and many functions operate on a variety of 
data types such as double, single, and complex.

In pMatlab, this concept is taken one step further. 
The polymorphism is exploited by introducing the 
map object. Map objects belong to a pMatlab class 
map and are created by specifying the grid description, 
the distribution description, and the processor list, as 
discussed in the section on ease of use and as illustrat-
ed in Figure 5. The map object can then be passed to 
a MATLAB constructor, such as rand, zeros, or ones. 
The constructors are overloaded and when a map ob-
ject is passed into a constructor, the library creates a 
variable of type dmat, or a distributed array. A PIT-
FALLS structure, described in Appendix A, is created 
when each dmat object is constructed. PITFALLS is 
a mathematical representation of data distribution in-
formation. pMatlab supports numerical arrays of up 
to four dimensions of different numerical data types 
and allows creation of distributed sparse matrices.

As discussed previously, a subset of functions, such 

as plus, minus, fft, mtimes, and all element-wise op-
erations are overloaded to operate on dmat objects. 
When using a pure PGAS programming model and 
an overloaded function, the dmat object can be treat-
ed as a regular array. Functions that operate only on 
the local part of the dmat object (element-wise opera-
tions) simply perform the operations requested on the 
local array, which is a standard MATLAB numerical 
type specified at array creation. Functions that require 
communication, such as redistribution (or subsasgn in 
MATLAB syntax) use MatlabMPI as the communica-
tion layer.

Let us return to the pMatlab FFT code in Figure 
6. Lines 3 and 4 define two pMatlab map objects: 
Xmap and Zmap. The user defines maps to specify 
how and where the numerical arrays in the program 
are mapped. In this example, all available processors 
are used (numbered sequentially from 0 to Np – 1). 
Distributed arrays are created by using the standard 
MATLAB array constructors. The outputs of the over-
loaded constructors are dmat objects. Lines 5 and 6 
in Figure 6 create two distributed complex matrices 
split up among Np processors. Xmap indicates that the 
matrix should be distributed row-wise with P/Np rows 
per processor, where as Zmap defines a column-wise 

FIGURE 9. Layered architecture. The pMatlab library implements distributed constructs, such as vectors, matrices, and 
multidimensional arrays and parallel algorithms that operate on those constructs, such as redistribution, FFT, and ma-
trix multiplication.
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distribution with Q/Np columns per processor. If a di-
mension is not evenly divisible by Np, pMatlab figures 
this out and shorts the last processor. Line 7 calls the 
overloaded FFT function on the distributed array X 
and returns the result into an array with the same map 
as the input. Line 9 uses the overloaded ‘=’ operator, 
which performs an all-to-all communication that re-
sults in Z having the same data as X, while distribut-
ing this data according to the distribution defined in 
Zmap.

Since all functions supported in pMatlab are imple-
mented in pure MATLAB, the pMatlab library main-
tains the portability of MatlabMPI. pMatlab can run 
anywhere MATLAB runs, given that there exists a 
common file system, a constraint imposed on pMat-
lab by MatlabMPI. A further benefit of the layered 
architecture of pMatlab is that any other communi-
cation library could be substituted for MatlabMPI, 
given that it implements the six basic MPI functions 
required by pMatlab (described in the section on the 
parallel MATLAB communication interface). 

Parallel MATLAB Execution. All pMatlab code re-
sides within a generic execution code framework (il-

lustrated in Figure 10) for initializing pMatlab (pMat-
lab_Init), determining the number of processors the 
program is being run on (pMATLAB.comm_size), 
determining the rank, or ID, of the local processor 
(pMATLAB.my_rank), and finalizing the pMatlab li-
brary when the computation is complete (pMatlab_Fi-
nalize). pMatlab uses the single-program multiple-data 
(SPMD) execution model, where the same code runs 
on all of the processors being used but each processor 
might operate on a different part of the data. The user 
runs a pMatlab program by calling the MatlabMPI 
command MPI_Run to launch and initialize the mul-
tiple instances of MATLAB required to run in parallel. 
Figure 10 shows an example of a RUN.m script that 
uses MPI_Run to launch four copies of the pFFT.m 
script.

Maps and Distributions. The concept of using maps 
to describe array distributions has a long history. The 
ideas for pMatlab maps are principally drawn from 
the High Performance Fortran community [34, 35], 
the Lincoln Laboratory Space-Time Adaptive Process-
ing Library (STAPL) [36], and the Parallel Vector Li-
brary (PVL) [9]. The map concept has been adopted 

FIGURE 10. pMatlab execution code framework. A pMatlab program (pFFT.m) is launched by using the 
MPI_Run command shown in the RUN.m file, which sets the number of processors and specifies which 
machines to run on. MPI_Run starts Np instances of MATLAB, each with a different rank. Within the pMat-
lab program the pMatlab environment is initialized and the number of processors and local rank are ob-
tained. The pMatlab_Finalize command completes the program.

pFFT.m file rank=3
% Initialize pMatlab.
pMatlab_Init;

% Get number of processors.
Np = pMATLAB.comm_size;

% Get rank of processor.
my_rank = pMATLAB.my_rank;

% Perform computation ...

% ... end computation

% Finalize pMatlab.
pMatlab_Finalize;

pFFT.m file rank=2
% Initialize pMatlab.
pMatlab_Init;

% Get number of processors.
Np = pMATLAB.comm_size;

% Get rank of processor.
my_rank = pMATLAB.my_rank;

% Perform computation ...

% ... end computation

% Finalize pMatlab.
pMatlab_Finalize;

pFFT.m file rank=1
% Initialize pMatlab.
pMatlab_Init;

% Get number of processors.
Np = pMATLAB.comm_size;

% Get rank of processor.
my_rank = pMATLAB.my_rank;

% Perform computation ...

% ... end computation

% Finalize pMatlab.
pMatlab_Finalize;

pFFT.m file rank=0
% Initialize pMatlab.
pMatlab_Init;

% Get number of processors.
Np = pMATLAB.comm_size;

% Get rank of processor.
my_rank = pMATLAB.my_rank;

% Perform computation ...

% ... end computation

% Finalize pMatlab.
pMatlab_Finalize;

RUN.m file
% Name script to run.
Mfile = pFFT.m;

% Set number of processors.
Np = 4;

% Provide machine names.
nodes = {‘node1’ ‘node2’};

% Define global variable.
global pMATLAB;

% Run the script with MPI_Run.
eval(MPI Run(mFile,Np,nodes));
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by VSIPL++, a C++ standard for writing embedded 
signal- and image-processing applications. A map for 
a numerical array defines how and where the array is 
distributed (as shown earlier in Figure 3). PVL also 
supports task parallelism with explicit maps for mod-
ules of computation. pMatlab explicitly supports only 
data parallelism; however, implicit task parallelism can 
be implemented through careful mapping of data ar-
rays.

The pMatlab map construct is defined by three 
components: (1) the grid description, (2) the distribu-
tion description, and (3) the processor list. The grid, 
together with the processor list, describes where the 
data object is distributed, while the distribution de-
scribes how the object is distributed (as shown earlier 
in Figure 5). pMatlab supports any combination of 
block-cyclic distributions up to four dimensions. Fig-
ure 11 shows the Application Programmer Interface 
(API) for defining these distributions.

Block distribution is the default distribution, which 
can be specified explicitly or by simply passing an 
empty distribution specification to the map function. 
Cyclic and block-cyclic distributions require the user 

to provide more information. Having access to a vari-
ety of data distributions allows the users to implement 
efficient algorithms. For example, a block distribution 
is efficient for computations where operations on the 
array are largely uniform; on the other hand, a cyclic 
distribution is often necessary for load balancing in 
some matrix decomposition routines. Distributions 
can be defined for each dimension, and each dimen-
sion could potentially have a different distribution 
scheme. Additionally, if only a single distribution is 
specified and the grid indicates that more than one di-
mension is distributed, that distribution is applied to 
each dimension.

Some applications, particularly image processing, 
require data overlap, or replicating rows or columns of 
the data on neighboring processors. This capability is 
also supported through the map interface. If overlap is 
necessary, it is specified as an additional fourth argu-
ment. In Figure 11, the fourth argument indicates that 
there is 0 overlap between rows and 1 column overlap 
between columns. Overlap can be defined for any di-
mension and does not have to be the same across di-
mensions.

FIGURE 11. Supported distributions. Block distribution divides the object evenly among avail-
able processors. Cyclic distribution places a single element on each available processor and 
then repeats. Block-cyclic distributions places the specified number of elements on each avail-
able processor and then repeats. Block overlap allows for replication of rows and/or columns of 
data on neighboring processors.

Block

Block overlap

Cyclic

Block cyclic

Np = pMATLAB.comm_size;
N = 16;

dist_spec.dist = ‘c’;    

dist_spec.dist = ‘bc’;
dist_spec.size = 2;

dist_spec.dist = ‘b’; 
Amap = map([1 Np],dist_spec,0:Np-1);

% Map with overlap of 1.
Amap = map([1 Np],dist_spec,0:Np-1,[0 1]);

A = zeros(1,N,Amap);

% Set number of processors.
% Set size of row vector.

% Define cyclic distribution.

% Define block-cyclic distribution.
% Set block size = 2.

% Define block distribution.
             % Create a map.

% Create a distributed array.
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Maps introduce a new construct and potentially re-
duce the ease of programming. However, maps have 
significant advantages over message passing approach-
es and predefined limited-distribution approaches. 
Specifically, pMatlab maps are scalable, allow optimal 
distributions for different algorithms, and support 
pipelining.

Maps are scalable in both the size of the data and 
the number of processors. Maps allow the user to 
separate the task of mapping the application from the 
task of writing the application. Different sets of maps 
do not require changes to be made to the application 
code. Specifically, the distribution of the data and the 
number of processors can be changed without making 
any changes to the algorithm. Separating mapping of 
the program from the functional programming is an 
important design approach in pMatlab.

Maps make it easy to specify different distributions 
to support different algorithms. Optimal or suggested 
distributions exist for many specific computations. For 
example, matrix multiply operations are most efficient 
on processor grids that are transposes of each other. 
Column- and row-wise FFT operations produce lin-
ear speedup if the dimension along which the array is 
broken up matches the dimension on which the FFT 
is performed (see Figure 6 as an example). 

Maps also allow the user to set up pipelines in the 
computation, thus supporting implicit task parallel-
ism. Task parallelism allows the user to perform dif-
ferent computations (tasks) on different sets of pro-
cessors, while pure data parallelism implies simply 

splitting up the data between processors and perform-
ing all computations on all processors on the local part 
of the data. For example, pipelining is a common ap-
proach to hiding the latency of the all-to-all commu-
nication required in parallel FFT. The following slight 
change in the maps can be used to set up a pipeline 
where the first half of the processors performs the first 
part of the FFT and the second half performs the sec-
ond part:

%	 Row	 map	 on	 first	 set	 of	 processors.	

Xmap	=	map([Np/2	1],{},[0	:Np/2-1]);	

%	Column	map	on	second	set	of	processors.	

Zmap	=	map([1	Np/2],{},[Np/2:Np-1]);	

When a processor encounters such a map, it first 
checks if it has any data to operate on. If the proces-
sor doesn’t have any data, it proceeds to the next line. 
In the case of the FFT with the above mappings, the 
first half of the processors (rank 0 to Np/2 – 1) will 
simply perform the row FFT, send data to the second 
set of processors, skip the column FFT, and proceed to 
process the next set of data. Likewise, the second set 
of processors (ranks Np/2 to Np – 1) will skip the row 
FFT, receive data from the first set of processors, and 
perform the column FFT.

Parallel MATLAB Communication Interface. Mat-
labMPI is a pure MATLAB implementation of the 
most basic MPI functions [7]. Table 3 lists the func-
tions required by pMatlab. The file input/output 
(I/O)-based communication is done through a com-

mon file system, illustrated 
in Figure 12. The advantage 
of this approach is that the 
library is small (about 300 
lines), is highly portable, has 
a huge message buffer (the 
size of disk storage), and al-
lows for non-blocking mes-
sage sends. The price for 
this portability is that while 
MatlabMPI performance is 
comparable to C+MPI for 
large messages, its latency for 
small messages is much high-
er, as shown in Figure 13. 

Table 3. Selected MPI Functions Provided by MatlabMPI

	 Function	Name	 Function	Description

 MPI_Init Initializes MPI

 MPI_Comm_size Gets the number of processors in a communication

 MPI_Comm_rank Gets the rank of current processor within a communicator

 MPI_Send Sends a message to a processor

 MPI_Recv Receives a message from a processor

 MPI_Finalize Finalizes MPI

* pMatlab can be built on top of any communication library that implements these six functions.
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When we were designing pMatlab, it was important 
to ensure that the overhead incurred by the library did 
not significantly impact performance. From a library 
perspective, this means that the performance of the 
communication operations using the overloaded ‘=’ 
operator should be as close as possible to the equivalent 
MatlabMPI code. Figure 14 shows the performance of 
an all-to-all operation using MatlabMPI, pMatlab ‘=’, 
and the pMatlab transpose_grid function.

From an application perspective, minimizing over-
head means using algorithms that use fewer larger 
messages instead of many smaller messages. In the sec-
tion on HPC Challenge benchmarks we see that the 

relative performance of these benchmarks can essen-
tially be derived from the performance of the under-
lying MatlabMPI library. STREAM (no communica-
tion) delivers essentially equivalent performance to the 
C+MPI implementation. FFT (all-to-all) and Top500 
(broadcast) fall into the large message regime and de-
liver reasonable performance. RandomAccess is de-
signed to stress small messages, and the relative perfor-
mance of pMatlab is much worse. Fortunately, most 
real pMatlab programs tend to involve large messages.

Parallel Support Functions. Every PGAS implemen-
tation must provide a set of functions for managing 
and working with global arrays, which have no serial 

FIGURE 12. MatlabMPI file input/output (I/O)-based communication. MatlabMPI uses file I/O to imple-
ment point-to-point communication. The sender writes variables to a buffer file and then writes a lock 
file. The receiver waits until it sees the lock file, and it then reads in the buffer file.

FIGURE 13. MatlabMPI versus C+MPI. Bandwidth and latency versus message size. Bandwidth is given as fraction 
of the peak underlying link bandwidth. Latency is given in terms of processor cycles. For large messages the perfor-
mance is comparable. For small messages the latency of MatlabMPI is much higher.
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equivalents. Table 4 shows the set of pMatlab paral-
lel support functions. These functions allow the user 
to aggregate data onto one or many processors, deter-

mine which global indices are local to which proces-
sors, and get/put data from/to the local part of a dis-
tributed array. This set of functions is relatively small. 
To support the development process discussed in the 
section on ease of use, all these functions have been 
overloaded to also work on serial MATLAB arrays so 
that the code will still work if the pMatlab maps have 
been turned off.

high performance Computing Challenge  
benchmarks

In this section we focus on benchmark results to de-
termine the limits of pMatlab performance. We are in-
terested in looking at performance from a number of 
viewpoints. First, we are interested in the performance 
of pMatlab relative to serial MATLAB since this is 
what most users care about. Second, we are interested 
in the performance of pMatlab relative to C+MPI as a 
way of gauging the quality of the implementation and 
as a guide to future performance enhancements. We 
have chosen to use the HPC Challenge benchmark 
suite [37] developed under the Defense Advanced Re-
search Projects Agency (DARPA) High Productivity 
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FIGURE 14. MatlabMPI versus pMatlab. Relative all-to-all 
performance for a pure MatlabMPI implementation, an A(:,:) 
= B pMatlab implementation, and a transpose_grid imple-
mentation. The x-axis represents size of each matrix relative 
to node memory. The y-axis represents throughput relative 
to peak bandwidth. The comparison illustrates that pMatlab 
incurs only a small overhead compared to MatlabMPI. The 
overhead can be further reduced by using a specialized func-
tion such as transpose_grid.

Table 4. pMatlab Parallel Support Functions

Function	name	 Function	description

 synch synchronizes the data in the distributed matrix

 agg aggregates the parts of a distributed matrix on the leader processor

 agg_all aggregates the parts of a distributed matrix on all processors in the communication scope

 global_block_range returns the ranges of global indices local to the current processor

 global_block_ranges returns the ranges of global indices for all processors in the map of distributed array D on  
  all processors in communication scope

 global_ind returns the global indices local to the current processor

 global_inds returns the global indices for all processors in the map of distributed array D

 global_range returns the ranges of global indices local to the current processor

 global_ranges returns the ranges of global indices for all processors in the map of distributed array D

 local returns the local part of the distributed array

 put_local assigns new data to the local part of the distributed array

 grid returns the processor grid onto which the distributed array is mapped

 inmap checks if a processor is in the map
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Computing Systems program, 
summarized in the sidebar of 
the same name, for this com-
parison. HPC Challenge, illus-
trated in Figure 15, is designed 
to represent a range of compu-
tations that focus on different 
parts of the memory hierarchy. 
In addition, HPC Challenge 
computations are sufficiently 
well defined that they can be 
implemented in a variety of 
programming models. We will 
first present the performance 
results and then discuss each of 
the benchmarks in more detail.

The four primary HPC Chal-
lenge benchmarks (STREAM, 
FFT, Top500, and RandomAc-
cess) were implemented with 
pMatlab and run on the LLGrid 
b system. Details of the LLGrid b system are discussed 
in the section on grid computing architecture. Both 
the pMatlab and C+MPI reference implementations 
of the benchmarks were run on 1, 2, 4, 8, 16, 32, 64, 
and 128 processors. At each processor count the larg-
est problem size that would fit in the main memory 
was run. The collected data measure the relative com-
pute performance and the memory overhead of pMat-
lab with respect to C+MPI, as illustrated in Figure 
16. In addition, we also look at the relative code sizes 
of the benchmarks as an approximate measure of the 
complexity of the implementations. The three parts of 
Table 5 summarize the relative memory required, the 
benchmark performance, and the code size compari-
sons, respectively.

In general, we see from Figure 16 that the pMatlab 
implementations can run problems that are typically 
half the size of problems in C+MPI implementations. 
This is mostly due to the need to create temporary 
arrays when using high-level expressions. The pMat-
lab performance ranges from being comparable to 
the C+MPI code (FFT and STREAM), to somewhat 
slower (Top500), to a lot slower (RandomAccess). In 
contrast, the pMatlab code is typically three to forty 
times smaller than the equivalent C+MPI code.

STREAM

The STREAM benchmark consists of local operations 
on distributed vectors. The operations are copy, scale, 
add, and triad, with triad defined as

 a b c← + α

where a, b, and c are double precision vectors of length 
m, with the constraint

 

size size size bytes

system m

( ) ( ) ( )a b c+ + =

>

24
1
4

m

eemory.

The goal of the benchmark is to measure local main 
memory bandwidth, so performance is reported in 
terms of bytes/sec

 Gigabytes/sec = 10–9 24m/time

The operations are embarrassingly parallel and are 
implemented entirely with the pMatlab fragmented 
PGAS approach (see Figure 8).

The maximum problem size of the pMatlab code 
is 1.5 times smaller than the C+MPI code, which is 
due to the need to create intermediate temporary ar-
rays. The need for temporaries is a side effect of most 

FIGURE 15. High Performance Computing (HPC) Challenge and the memory hierarchy. 
HPC Challenge benchmarks have been chosen to cover a range of memory access pat-
terns and stress different parts of the memory hierarchy. Top500 performance is mostly 
dominated by local matrix multiply operations. RandomAccess is dominated by all-to-all 
communications of very small messages. FFT is also dominated by all-to-all communi-
cations, but for very large messages. STREAM requires no communication, is dominat-
ed by local vector operations, and stresses local processor-to-memory bandwidth.
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high-level programming environments. The perfor-
mance of the pMatlab code is the same as the C+MPI 
code. This is because the MATLAB interpreter recog-
nizes the scale-and-add statement and replaces it with 
a call to the appropriate optimized Basic Linear Alge-
bra Subroutine (BLAS). The pMatlab code is about 
three times smaller than the C+MPI code due to the 
elimination of various for loops and the use of built-in 
MATLAB functions.

FFT

The FFT benchmark performs a complex-to-complex 
1D FFT

  Z ← FFT(z), 

where Z and z are m-element double-precision com-
plex vectors, with the constraint

 size(z + Z) = 32m bytes > ¼ system memory.

The input z should be in linear ‘time’ order. The out-
put Z should be in standard frequency order. Any 
necessary reordering time should be included. Dif-
ferent implementations of the FFT algorithm may 
use optimizations to reduce the number of operations 
required. Regardless of the number of operations per-
formed, however, the performance in gigaflops is re-
ported by using the standard radix 2 FFT algorithm 
operations count:

 gigaflops = 10–9 × 5m log2(m)/time.

The standard parallel implementation of a 1D FFT 
performs two two-dimensional (2D) FFTs with a cor-
ner turn, or an all-to-all redistribution, between the 
two FFTs (see Figures 6 and 8). In our pMatlab imple-
mentation we deviated from the FFT specification in 
two ways. First, the input data is initialized by using 
a random selection of cosine and sine waves, which 
does not affect performance, but is a significant aid to 

FIGURE 16. pMatlab and C+MPI HPC Challenge performance. pMatlab can run problems that are typically half the size of C+MPI 
problem size. pMatlab performance varies from being comparable to the C+MPI code (FFT and STREAM), to somewhat slower 
(Top500), to a lot slower (RandomAccess). The figure presents performance relative to the one-processor C+MPI case.
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D A R PA  H i g H  P Ro D u c t i v i t y  c o m P u t i n g 
S y S t e m S  P Ro g R A m

High-performance comput-
ing has seen extraordinary 

growth in peak performance from 
megaflops to teraflops in the past 
decades, as illustrated in Figure A. 
This increase in performance has 
been accompanied by a large shift 
away from the original national 
security user base of the 1970s 
and 1980s to more commercially 
oriented applications such as bio-
informatics, finance, and enter-
tainment. In addition, there has 
been a significant increase in the 
difficulty of using these systems, 
which are now the domain of 
highly specialized experts.

In response to these trends, the 
DARPA High Productivity Com-
puting Systems (HPCS) program 
was established to produce a new 
generation of economically via-
ble, high-productivity computing 
systems for the national security 
and industrial user communities. 
The primary technical goals of 
the program are to produce peta-
scale throughput computers that 
can better run national security 
applications and are usable by a 
broader range of scientists and 
engineers. The HPCS program is 
fostering many technological in-
novations, and one of the most 

important is the concept of a flat-
ter memory hierarchy. The mem-
ory hierarchy refers to the levels of 
memory accessed by processors, 
which include (from nearest to 
farthest from the local processor) 
the local processor registers, local 
caches, local memory, the memo-
ry of other processors in the par-
allel system, and the storage sub-
systems. 

Memory levels nearer to the 
processor have lower data-retriev-
al latency but have smaller stor-
age capacity (see Figure 15 in the 
main text). Historically, the la-
tency differences between access-
ing local processor registers, local 
cache, and local memory versus 
accessing remote memory and 
storage subsystems have been two 
or more orders of magnitude. 
Having a flatter memory hierar-
chy means a significant reduction 
in the differences in latencies be-
tween memory levels. Lowering 
the latency difference between the 
local and remote memory hierar-
chy levels is particularly impor-
tant. This implies that the laten-
cy for retrieving data from remote 
memories is more commensu-
rate with the access latency of lo-
cal cache and memory. A flatter 
memory hierarchy will result in a 
significant performance increase 
(up to 2000 times) in certain im-
portant classes of applications 
that exploit random memory ac-

FIGURE A. Evolution of supercomputing. The performance of supercomput-
ers has grown from megaflops to teraflops in three decades. Meanwhile, the 
user base of supercomputers has shifted from national security in the 1970s 
and 1980s to more commercially oriented applications such as animation and 
entertainment. The difficulty of using these systems has also increased. Cur-
rently, supercomputers are the domain of highly specialized experts. 
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debugging the code. Second, our implementation uses 
an ordering scheme that eliminates initial and final all-
to-all communication steps, which is more consistent 
with the use of this function for most real applications 
and provides a better predictor of 2D and three-di-
mensional (3D) FFT performance. We have properly 
removed the time due to initial and final all-to-all steps 
in the C+MPI code so that a legitimate comparison 
can be made. The optimized pMatlab code (illustrated 

earlier in Figure 8) uses local arrays and the transpose_
grid function with optimized message ordering.

The maximum problem size of the pMatlab code is 
3.5 times smaller than the C+MPI code, which is due 
to the need to create intermediate temporary arrays. In 
addition, MATLAB internally uses a ‘split’ representa-
tion for complex data types, while the serial FFTW li-
brary being called uses an ‘interleaved’ representation. 
As a result, the data needs to be transformed between 

cesses. In addition, a flatter mem-
ory hierarchy is much easier to 
program because the users don’t 
have to worry as much about pre-
cisely tailoring their applications 
to avoid the high latency cost of 
retrieving remote data.

To measure the performance of 
the memory hierarchy, the HPCS 
program has developed the HPC 
Challenge benchmark suite and 
has sponsored the HPC Challenge 
contest that awards a prize for the 
best performance on each bench-

mark. In addition, there is also a 
coding contest, which rewards the 
best and most clearly written im-
plementations of the benchmarks. 
Figure B shows selected perfor-
mance results from the first year 
of the contest. The flatness of the 
memory hierarchy is determined 
by the spread between the top 
points (Top500 result) and bot-
tom points (RandomAccess re-
sult) for a given system. 

These results illustrate three 
major points. First, the memory 
hierarchy of clusters (the leftmost 
seven systems) gets more pro-
nounced as the systems get larger. 
This can be seen in the widening 
gap between the performance of 
the Top500 and the RandomAc-
cess benchmarks as cluster sys-
tems get larger. Second, current 
HPC systems (eighth through 
eighteenth system) do a good 
job of keeping the memory la-
tency difference constant as the 
machine gets larger. Third, the 
HPCS performance targets will 
result in a system that is not only 
larger than current systems, but 
will also have a memory hierarchy 
that is 100 times flatter than cur-
rent HPC systems, as illustrated 
by the rightmost system.

FIGURE B. HPC Challenge competition. The results illustrate three major 
points: (1) the memory hierarchy of clusters (the left most seven systems) gets 
more pronounced as the systems get larger; (2) current HPC systems (center to 
right) do a good job of keeping the memory latency difference constant as the 
machine gets larger; (3) HPCS performance targets (at the far right) will result 
in a system that is not only larger but will also have a memory hierarchy that is 
100 times flatter than current HPC systems.
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these representations, which takes additional memory. 
On one processor the MATLAB FFT performance is 
about five times slower than the C code because of the 
time overhead required to perform the conversion be-
tween complex data storage formats. As the problem 
grows, the FFT time becomes dominated by the time 
to perform the all-to-all communication necessary be-
tween computation stages. Since these are primarily 
large messages, the performance of pMatlab becomes 
the same as the C+MPI code at large numbers of pro-
cessors. The pMatlab code is about ten times smaller 
than the C+MPI code because of the use of built-in 
local FFT calls and the elimination of MPI messaging 
code.

RandomAccess 

The RandomAccess benchmark generates a sequence 
of random array indices and uses these indices to up-
date a large table. Let T be a table of size 2m and let 
{ai} be a pseudorandom stream of 64-bit integers of 
length 2m+ 2. Then for each ai we update the table as 
follows:

 

T a m

T a m a
i

i i

( ( , ))

( ( ( , ), ) ,

AND

XOR AND

−
= −

1

1

with the additional constraints that each processor can 
buffer no more that 1024 updates and 

Table 5(a). Maximum Problem Size Relative to the C+MPI Single Processor Case on 128 Processors 

	 Implementation	 STREAM	 FFT	 RandomAccess	 HPL(32)

 C+MPI/C serial 63.9 72.7 48 32.6

 pMatlab/C serial 42.8 21.3 32 9.3

 C+MPI/pMatlab 1.5 3.4 1.5 3.5

Table 5(b). Benchmark Performance Relative to the C+MPI Single Processor Case on 128 Processors 

	 Implementation	 STREAM	 FFT	core	 RandomAccess	 HPL(32)

 C+MPI/C serial 62.4 4.6 7.4 × 10–2 28.2

 pMatlab/C serial 63.4 4.3 1.6 × 10–3 6.8

 C+MPI/pMatlab 1 1 46 4

Table 5(c). Code Size Comparisons * 

	 Implementation	 STREAM	 FFT	 RandomAccess	 HPL

 C+MPI 347 787 938 8800

 pMatlab 119 78 ** 157 190

 C+MPI/pMatlab 3 10 6 40

* Code size is measured in terms of source lines of code. The parallel code sizes of the  
HPC Challenge C+MPI reference code are taken from the HPC Challenge FAQ.

** Includes code used to create random waves; does not include code for initial and final all-to-all operations. 
Combined, these should roughly offset each other.
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 size(T ) = 8m bytes > ¼ system memory.

The goal of the benchmark is to measure the rate at 
which atomic updates can be performed to global 
memory:

 

number of giga-updates per second (GUPS)

= 110 /time ,–9 Nupdates

where Nupdates is the number of updates. RandomAc-
cess requires communication patterns that are signifi-
cantly more complicated than STREAM or FFT. In 
addition, communication is sufficiently fine-grained 
that there is significant overhead associated with com-
puting global-to-local array index mappings every 
time a global array is accessed. Thus RandomAccess 
uses the pMatlab constructs to determine the global-
to-local array index mappings once, but subsequently 
uses fragmented PGAS with direct message passing 
to perform the appropriate redistributions (see Figure 
17 and Appendix B). This methodology allows us to 
implicitly exploit the fact that the array redistributions 
are static. For example, to minimize contention, each 
processor is able to compute in advance the optimal 
send order and optimal receive order of its messages. 
RandomAccess is a good illustration of how PGAS 
and messaging can work together to reduce the book-
keeping necessary for a parallel program, while still al-
lowing a complex messaging scheme that is outside of 
the traditional PGAS formalism.

The maximum problem size of the pMatlab code 
is 1.5 times smaller than the C+MPI code, because 
of the need to create intermediate temporary arrays. 
On one processor the pMatlab RandomAccess perfor-
mance is comparable to the C+MPI code. On larger 

numbers of processors, however, the pMatlab code is 
forty-five times slower than the RandomAccess code. 
This performance difference is due to the large latency 
of using file I/O for communicating small messages, 
which should be eliminated if pMatlab was built on 
a more traditional MPI implementation such as that 
used in DCT. The pMatlab code is six times smaller 
than the C+MPI code.

High Performance Linpack (Top500)

The High Performance Linpack (HPL) benchmark 
solves a dense linear system Ax = b by using LU fac-
torization with partial pivoting [38], where b is an 
n-element vector, and A is an n × n double-precision 
matrix with the constraint

 size(A) = 8n2 bytes > ½ system memory.

The LU factorization is the dominant computation 
step in this algorithm and is principally made up of 
repeated matrix multiplies. The traditional parallel al-
gorithm uses a sophisticated 2D block-cyclic distribu-
tion for the matrix A [39]. This algorithm has dem-
onstrated very good performance even on computers 
with relatively slow networks. More recently it has be-
come apparent that there is a complexity performance 
trade-off associated with using 2D block-cyclic distri-
butions. Thus the pMatlab version uses a simpler but 
poorer-performing algorithm, with a 1D block dis-
tribution for A (see Figure 18 and Appendix B). The 
pMatlab code uses distributed arrays to break up the 
array and keep track of the various global indices. A 
key step in the algorithm requires broadcasting the re-
sults to a subset of the other processors, which is best 
done with a simple MPI multicast command.

The maximum problem size of the pMatlab code is 
3.5 times smaller than the C+MPI code, which is due 
to the need to create intermediate temporary arrays. 
In particular, the lower and upper triangular matrices 
are returned as full matrices, while in the C+MPI code 
they can be merged into a single array. The pMatlab 
code provides a ten-times speedup on 32 processors, 
which is about four times slower than the C+MPI 
code. pMatlab achieves the performance limits of the 
1D block algorithm on the system. Improving the 
network of this hardware should significantly improve 
the pMatlab code performance, relative to the C+MPI 

FIGURE 17. The RandomAccess benchmark generates a se-
quence of random array indices and uses these to update a 
large table. For code highlights, see Appendix B.
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code. The pMatlab code is forty times smaller than 
the C+MPI code. About 25% of this improvement is 
due to the higher-level abstractions from pMatlab, and 
about 10% is due to using the simpler algorithm.

Benchmark Performance Summary

Returning to our initial metrics we see that, relative to 
serial MATLAB, all the pMatlab codes allow problems 
sizes to scale linearly with the number of processors. 
Likewise, the pMatlab codes all experience signifi-
cant performance improvements (with the exception 
of RandomAccess). Relative to C+MPI, the pMatlab 
problem sizes are smaller by a factor of two and the 
performance of pMatlab on both the STREAM and 
FFT is comparable.

Figure 19 shows one approach to summarizing the 
performance of the HPC Challenge benchmarks. The 
speedup and relative source lines of code (SLOC) for 
each implementation were calculated with respect to 
a serial C/Fortran implementation. In this plot we see 
that with the exception of RandomAccess, the C+MPI 
implementations all fall into the upper right quadrant 
of the graph, indicating that they deliver some level of 
parallel speedup, while requiring more SLOC than the 
serial code. Of course, the serial MATLAB implemen-
tations do not deliver any speedup, but they all do re-
quire fewer SLOC than the serial C/Fortran code. The 
pMatlab implementations (except RandomAccess) fall 
into the upper left quadrant of the graph, delivering 
parallel speedup while requiring fewer lines of code.

the llGrid on-demand interactive  
Grid Computing system

While the pMatlab library is the part of LLGrid with 
which users interface the most, there are several oth-
er parts to the system that work behind the scenes to 
provide users with an easy-to-use high-performance 
computing capability. This section describes the other 
components of the LLGrid system in greater detail, 
which includes the LLGrid architecture, the gridMat-
lab toolbox, and the system management tools. 

Grid Computing Architecture

Figure 20 shows the roadmap of the LLGrid cluster 
system, and Table 6 logs the pertinent data for each 
of these cluster improvements. The approach that the 
LLGrid team used was to learn as we went along. In 
early 2003, the team built several small four-to-eight 
processor clusters to gain experience and understand-
ing in building cluster systems. After demonstrating 
the capability of launching MatlabMPI jobs onto the 
cluster using gridMatlab (see the section on the grid 
computing toolbox) to interface with a resource man-
ager, and demonstrating the first prototypes of pMat-
lab in the fall of 2003, the team purchased their first 
set of cluster nodes, including 500 GB of shared stor-
age, which was called the ‘gridsan’ shared file server. 
The 32 nodes (64 processors) were deployed to the 
first LLGrid users in January 2004, and they are de-
picted on the roadmap as the initial operating capabil-

FIGURE 18. The High Performance Linpack (HPL) Top500 benchmark solves a dense linear 
system Ax = b using LU factorization with partial pivoting, where b is an n-element vector, 
and A is an n × n double-precision matrix. For code highlights, see Appendix B.
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ity (IOC). As the user base of this system increased, 
another set of 48 nodes (96 processors) was added in 
July 2004. These 160 processors, which form the a-
Grid system in the roadmap, were deployed in labo-
ratory space in Lincoln Laboratory’s S Building (illus-
trated in Figure 21). The improved cluster was used 
to learn about configuring and maintaining modestly 
heterogeneous compute nodes, scaling the shared file 
system, and adding users to the system.

The recent purchase of 150 compute servers (300 
processors) and a high-performance parallel file sys-
tem in April 2005 tripled the size of the available 
compute nodes. The parallel file system is comprised 
of a 36-terabyte Data Direct Networks (DDN) S2A 
8500 storage-attached network (SAN) disk array con-
nected to eight Dell PowerEdge 1750 servers running 
the IBRIX FusionFS parallel file system. The network 
switches are connected directly to the LLAN back-
bone via optical fiber cable so that users have the fast-
est possible network connection to the LLGrid hard-
ware. This upgrade of compute servers and parallel file 

system helped the LLGrid team learn more about how 
to manage a relatively large cluster (we use the Rocks 
[40] cluster maintenance system) and parallel file sys-
tems, and how to enable parallel MATLAB jobs using 
over 32 processors. These systems are depicted in the 
roadmap as the b-Grid, and it was first installed in ten 
networking closets throughout S Building. In the first 
months of 2006, these systems were all moved into 
the F1 shared computing facility, a new facility built 
specifically to provide space to house computer sys-
tems for Laboratory projects. The F1 shared comput-
ing facility includes the necessary power and cooling 
to house a larger number of computer systems, remov-
ing the need to refit laboratory spaces across Lincoln 
Laboratory to accommodate computing systems. Fig-
ure 22 shows photographs of the exterior and interior 
of the F1 shared computing facility. 

Figure 1, at the beginning of the article, shows the 
architecture of the LLGrid system, including the Linux 
compute nodes, the Linux service nodes, the network 
configuration, and the gridsan shared network stor-
age. For the operating system on each of the compu-
tational and management nodes of the LLGrid cluster, 

FIGURE 19. Speedup (relative to serial C) versus code size 
(relative to serial C). The upper right quadrant is the tradi-
tional HPC regime; more coding is required to give more per-
formance and most of the C+MPI codes fall here. The low-
er left quadrant is the traditional regime of serial high-level 
languages that produce much smaller codes, but are slower. 
RandomAccess lies in the lower right and represents algo-
rithms that are simply a poor match to the underlying hard-
ware. The upper left quadrant is where most of the pMatlab 
implementations are found and represent smaller codes that 
are delivering some speedup.
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FIGURE 20. LLGrid hardware roadmap. The first LLGrid, the 
initial operating capability (IOC) grid system, started as 32 
dual-processor nodes (64 processors) in early 2004. Later, 48 
more dual-processor nodes (96 processors) were added to 
complete the 160-processor a-Grid system. In spring 2005 the 
team acquired 150 more compute servers (300 processors), 
which make up the b-Grid. Finally, we are in the process of 
acquiring an additional thousand processors, as part of the 
High Performance Computing Modernization Program (HP-
CMP), which will result in a full-grid system of nearly 1500 
processors capable of serving over 200 users.
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Table 6. Technical Specifications of the LLGrid System

	 New	Hardware	 IOC	Grid	 a-Grid	 b-Grid

Number of servers 32 48 150

Server Dell PowerEdge 2650 Dell PowerEdge 1750 Dell PowerEdge 1855

Total processors in update set 64 96 300

Total processors in cluster 64 160 460

Processors Dual Intel Xeon  Dual Intel Xeon Dual Intel Xeon 
 2.8 GHz 3.06 GHz 3.2 GHz

RAM 4.0 GB 4.0 GB 6.0 GB

Hard drives Two 36 GB Two 36 GB Two 144 GB

Network interfaces Two 1-gigabit Ethernet Two 1-gigabit Ethernet Two 1-gigabit Ethernet

Network switches Nortel BayStack 5510  Nortel BayStack 5510  Nortel BayStack 5510 
 gigabit switches gigabit switches gigabit switches

Shared file system Dell PowerVault 220s  Same as IOC Grid IBRIX Parallel File System with 
 SCSI-attached disk array  Data Direct Network S2A 8500

Shared file system capacity 500 GB 1.0 TB 32 TB

File system switch None None Brocade Silkworm 6010 2-GB 
   Fibre Channel switches

* The columns in the table correspond to the first three points on the hardware roadmap in Figure 20, 
while the rows provide details for each of the hardware components.

FIGURE 21. The accommodations of the LLGrid. In 2004, the first 160 processors of the LLGrid were installed in laboratory space 
in Lincoln Laboratory’s S Building. In 2005, 300 processors were added to the first 160, and they were installed in ten network 
closets throughout S Building. In the first several months of 2006, the 300 processors in the network closets were moved to the 
shared computing facility in Building F. The remaining 160 processors will also be moved into the computing facility, along with 
(eventually) the HPCMP cluster (described in the section on future hardware).
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we chose Linux [41] because it is a capable operating 
system that enables distributed and parallel comput-
ing. The LLGrid system requires a single common file 
system that is mounted on the user’s computer and on 
each of the computational nodes. This single common 
file system is required by MatlabMPI, as discussed ear-
lier in the article. Windows and MacOS users mount 
the gridsan file server as a Samba share, while Linux 
and Unix users use Network File System (NFS). 

Grid Computing Toolbox 

In order for a user to interact with the parallel com-
puting system, the LLGrid project has required several 
key innovations: (1) developing dynamic grid technol-
ogy that automatically pulls the user’s desktop system 
into the grid when a job is launched; (2) setting the 
user’s desktop system to be the job leader node (MPI 
Rank 0), thereby making the user a full participat-
ing member of the grid computation; (3) providing a 
shared network file system as the primary user inter-
face to the grid, and (4) integrating all services into a 
single one line MPI_Run command. 

The gridMatlab toolbox enables these innovations 
[42]. It transparently integrates the MATLAB system 
on each user’s desktop with the shared grid cluster 
through a cluster resource manager. When a user runs 
a MatlabMPI or pMatlab job in a desktop MATLAB 
session, the gridMatlab toolbox automatically amasses 
the requested LLGrid computational resources from 

the shared grid resources to process in parallel with the 
user’s MATLAB session. Each of the parallel MAT-
LAB processes communicate via MatlabMPI with 
one another and the user’s desktop computer through 
the gridsan shared network file system. By integrating 
the user’s MATLAB session into the set of grid clus-
ter MATLAB sessions working on the user’s code, the 
user interactively receives immediate feedback on the 
status of the job via text and graphics, thereby mak-
ing the parallel MATLAB session virtually identical to 
running MATLAB code on a single computer. 

The gridMatlab toolbox interfaces with an underly-
ing resource manager for three activities: cluster status 
monitoring (how many processors are available), job 
launching, and job aborting. A resource manager over-
sees the compute servers in a cluster, and it matches 
up jobs with unoccupied processors in the comput-
ing system. Once a match up is made, the resource 
manager launches the processes of the job onto the 
processors. The resource manager can also report on 
the status of jobs and processors, and can terminate 
the execution of processes. Four of the most popular 
resource managers are Condor (University of Wis-
consin), OpenPBS (open source) [43], Sun GridEn-
gine (Sun MicroSystems, open source) [44], and LSF 
(Platform Computing). Figure 23 illustrates the com-
mands used by these four different resource managers 
for cluster monitoring, job launching, and job abort-
ing. Currently, the LLGrid system is bound to Con-

FIGURE 22. Building F and the shared computing facility, built to provide space for Lincoln Laboratory’s computing resources. 
The building supplies the necessary power and cooling to house a large number of computers and provides infrastructure for 
collateral compute resources. The LLGrid system was moved into Building F in the spring of 2006.
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dor as the resource manager. Condor was chosen for 
several reasons, including its free license model and its 
ease of installation, configuration, and maintenance. 
However, gridMatlab can also bind to LSF, OpenPBS, 
or Sun GridEngine. 

Through calls to the resource manager, gridMatlab 
determines whether enough resources are available to 
satisfy the user’s request, thereby enabling on-demand 
resource allocation. On the occasion when there are 
insufficient resources, the gridMatlab toolbox negoti-
ates with the user whether the job can be run on fewer 
processors or whether the job should be resubmitted 
later. The system has been sized, however, so that such 
a situation rarely occurs. This scalability is one of the 
key differences between the LLGrid and typical super-
computing centers. Other systems measure success by 
showing maximally high utilization numbers to their 
sponsors. In other words, every processor needs to be 
occupied as much as possible. In order to achieve this 
maximum utilization, a queue is required from which 
to launch a new job when an executing job finishes. As 
a result, users must submit their job to the queue and 
wait an unspecified time until it executes. The philos-
ophy of the LLGrid team is that hardware is inexpen-
sive in comparison to a user’s time and salary. LLGrid 
is sized such that on average half of all of the proces-
sors are being used at any one time. This ensures that 
at peak usage times, there are enough processors avail-
able to minimize the number of rejections. Each user 
is advised of the maximum number of processors that 

are to be used for a conventional job on the LLGrid 
system. If a user needs more than this maximum num-
ber of processors, special arrangements can be made.

No matter which resource manager is used in the 
LLGrid system, the key innovation of gridMatlab is 
that it abstracts away all of the user interaction with 
the on-demand resource manager while it draws the 
user’s computer into the computational pool so that 
the user’s execution environment is consistent from se-
rial execution to interactive LLGrid parallel execution. 

System Management Tools

The LLGrid system management tools implement a 
number of capabilities that make system maintenance 
and usage easier for the LLGrid team and the LLGrid 
users. The system management tools include the Rocks 
cluster provisioning system, the LLGrid website, and 
some internally developed tools. 

The Rocks cluster provisioning system provides 
an automated facility for installing a Linux operating 
system, compilers, applications, monitoring tools, re-
source manager, file systems, and configuration files 
onto compute servers [40]. Each system ‘appliance’ 
type (e.g., compute node, web server node, resource 
manger master node) is described by an XML file 
that specifies what software bundles are installed on 
it. Thus a compute node appliance can be custom-
ized with certain software and configurations, while 
a service node like the resource manager master node 
can be customized with a different set of software and 

FIGURE 23. The gridMatlab launching mechanism. The figure depicts the steps that the gridMatlab toolbox takes to launch and 
abort pMatlab jobs along with the commands that are called in the bindings to four popular cluster resource managers.
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configurations. Figure 24 shows the LLGrid compo-
nents of the cluster installation that Rocks automates, 
including the Red Hat Linux operating system, MAT-
LAB, the IBRIX parallel file system, the Condor re-
source manager, various compilers and libraries, and 
the Ganglia cluster monitor. Rocks is the framework 
with which the LLGrid team has built the LLGrid 
system and has cloned satellite clusters of the LLGrid 
for restricted projects within the Laboratory. Without 
Rocks, reconfiguration and reinstallation of all the 
compute nodes in the LLGrid takes four hours; with 
Rocks this task can be completed in less than fifteen 
minutes. 

The LLGrid website serves three fundamental pur-
poses: (1) presenting the front end to the account 
creation script on the grid cluster; (2) providing users 
with the status of the entire grid cluster and each in-
dividual computation node; and (3) providing online 
documentation on pMatlab, the LLGrid system, and 
descriptions of other users’ projects. Figure 25 shows 
the LLGrid home page. Accounts are created by using 
a simple web interface, which eliminates at this stage 
the need for a system-administrator level of expertise. 
After the appropriate information is entered via the 
interface, a Perl CGI script creates the user’s account 
and establishes the user’s secure shell (SSH) certifi-

cates, toolbox links, and sample pMatlab scripts and 
tutorials. 

Once the account is created, another web page pro-
vides a hyperlink to a grid cluster monitoring website, 
and a hyperlink to a user system configuration script 
that mounts the LLGrid file system in the user’s envi-
ronment, configures the user’s SSH encryption keys, 
writes the proper LLGrid configuration file, and adds 
the gridMatlab, pMatlab, and MatlabMPI toolbox 
paths to the user’s MATLAB environment. The user 
downloads this system configuration script onto his 
or her desktop and runs it once. Within minutes the 
LLGrid file system is mounted and the user is ready 
to run his or her first LLGrid parallel job. To provide 
users the status of the grid cluster, we use Ganglia [45] 
because it is efficient and easy to install and maintain, 
and it presents information about the computational 
nodes in an easily understood format. Figure 26 shows 
a screenshot of the Ganglia web page.

Finally, the LLGrid team has built a number of 
tools. Among these is the gridgui, which interfaces 
with the resource manager and displays the processors 
that are currently occupied with jobs in the cluster, the 
user job associated with each processor, and the most 
recent jobs that have run on the LLGrid. Figure 27 
shows a screenshot of the gridgui tool. 

FIGURE 24. The parts of the LLGrid cluster system that the Rocks cluster provisioning system auto-
mates for installation. Rocks is the framework with which the LLGrid team builds the LLGrid system, as 
well as cloned satellite clusters of the LLGrid system for other projects within the Laboratory.
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user experience

The true measure of success for any technology is its 
effectiveness for real users. The initial LLGrid sys-
tem has been operational for over two years with 160 
processors and approximately a hundred 
users. The engineers and scientists at 
Lincoln Laboratory use the LLGrid to 
rapidly prototype their ideas. The system 
is very flexible, and its users are working 
on a wide variety of technologies, includ-
ing analysis of hyperspectral images from 
satellites, simulation of laser beam disper-
sion mitigation in the atmosphere, and 
simulation of Navy target-tracking com-
munication systems. The LLGrid has run 
over 37,000 processor days of computa-
tion, as of February 2006. The log files 
of this activity are filled with interesting 
usage results, and interviews with users 
have further enhanced the utility of the 
system. 

Figure 28 shows a scatter plot of the 
execution time of these parallel jobs ver-

sus the number of processors per job. 
Each dot is a job that was run on the a-
Grid cluster. The plot is partitioned into 
three sections: the bottom left, the top 
half, and the bottom right. On the bot-
tom left are jobs that were run on fewer 
than ten processors and executed in less 
than eight CPU hours. These parallel jobs 
probably could have been executed on 
a desktop computer in a serial manner. 
Most of these jobs, however, were prob-
ably used for debugging and validating al-
gorithms subsequently targeted for longer 
execution runs. The top half of the plot 
identifies jobs that ran in parallel for more 
than eight CPU hours on anywhere from 
two to a hundred processors. These jobs 
clearly required HPC resources to execute, 
and probably would have been accept-
able to run in a batch queue system. The 
bottom right of the plot shows jobs that 
executed on more than eight processors 

in less than an hour. Because of the relatively quick 
turnaround time of these jobs, they required interac-
tive, on-demand HPC access to effectively employ the 
users’ time. The shaded overlay on the graph shows 
the jobs enabled by the LLGrid system that would not 

FIGURE 25. The LLGrid home page on the internal Lincoln Laboratory in-
tranet. This page provides LLGrid users with grid cluster status and software 
documentation. The page also has an interface that allows quick account 
creation without requiring a system-administrator level of expertise.

FIGURE 26. The Ganglia cluster monitoring tool allows LLGrid users to view 
the status of the LLGrid cluster. Ganglia provides information such as the 
CPU load, network load, memory usage, and disk usage.
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have been easily executable or even possible on a serial 
desktop computer.

Table 7 provides a number of interesting statistics 
from the usage of the LLGrid system from December 
2003 to February 2006. First, the median number of 
CPUs used for a single job was 17, while the mean 
number of CPUs used for a single job was 22. More 

interesting, though, is the median and mean job ex-
ecution time: the median job duration is just 84 sec-
onds, while the mean job duration is 31 minutes. 
Clearly, users running jobs that would ordinarily need 
more than eight hours to execute on a desktop com-
puter are typically executing on 32 or fewer processors 
in less than thirty minutes. Some users are executing 

FIGURE 27. A screenshot of the gridgui tool, which shows the occupied processors on the LLGrid system and the user jobs as-
sociated with each processor.
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FIGURE 28. LLGrid usage. Scatter plot of the number of pro-
cessors per job (x-axis) versus the duration of the job per 
second (y-axis). Each dot in the plot represents a job that 
was run on the a LLGrid cluster. The three regions in the 
plot illustrate different modes of usage. On the bottom left 
are the jobs that used fewer than ten processors and execut-
ed in less than eight CPU hours. Most of these jobs can be 
executed on a desktop computer and are most likely debug-
ging runs in preparation for larger runs. In the top half are 
jobs that required more than eight CPU hours on from two 
to a hundred processors. These jobs could have been run 
in a batch queue regime and are characteristic of traditional 
jobs at a supercomputer center. On the bottom right are the 
jobs that are unique to the LLGrid system. These jobs, which 
used more than ten processors and executed in less than an 
hour, required the on-demand, interactive capability that the 
LLGrid system provides. Two particular projects discussed 
in detail are highlighted—nonlinear equalization (NLEQ) and 
Terminal Doppler Weather Radar (TDWR).
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debugging runs in preparation for longer parallel exe-
cution runs, while other users are running simulations 
in parallel that complete in less than half an hour. 
These same simulations would have taken many hours 
on a desktop computer.

There are many examples of how various research 
programs at the Laboratory are using the LLGrid sys-
tem. Two of these projects are highlighted here.

The Terminal Doppler Weather Radar (TDWR) 
Data Quality Improvement program is developing 
signal processing algorithms to mitigate range-velocity 
ambiguity [46]. For instance, gust fronts that are with-
in close range of the radar can be obscured by range-
overlaid signal from distant out-of-trip weather using 
the current operational algorithm. The new algorithms 
are able to discriminate these gust fronts, which will 
be a significant improvement for helping pilots and 
control towers understand the weather in which they 
are flying and directing airplanes. The program team 
needed to rapidly write, evaluate, and revise its algo-
rithms, which were written in MATLAB. Running the 
algorithms on simulation datasets on a desktop work-
station typically executed for eight to ten hours. The 
results of each simulation direct the parameter and al-
gorithm development choices for subsequent simula-
tions, and they usually could execute only two of these 
simulations in a 24-hour period—one over the course 
of the business day and one overnight. That is, they 
were only executing two engineering turns per day. 
After parallelizing the simulations, the team now runs 

the simulations on the desktop machines with eight to 
sixteen LLGrid processors coming alongside the desk-
top computer to complete the computations. These 
simulations now complete in thirty to sixty minutes, 
affording between eight and ten engineering turns per 
day. Figure 29 illustrates the usage patterns and Figure 
30 demonstrates data improvement.

Another example is the DARPA-sponsored Non-
linear Equalization (NLEQ) program, which is devel-
oping an application-specific integrated circuit (ASIC) 
that will improve signal-to-noise and distortion ratios 
of radar signals up to 10 dB, as illustrated in Figure 
31. Phased-array radar systems have many analog-
to-digital converters to improve dynamic range. In-
creasing the dynamic range lowers the noise floor and 
causes nonlinearities to rise above it. Nonlinearities be-
come an issue for Department of Defense (DoD) ap-
plications that require detections of faint signals. The 
NLEQ program is developing algorithms to reduce 
nonlinearities to below the noise level. 

In order to capture these algorithms in an ASIC, a 
huge number of simulations are required to converge 

Table 7. LLGrid System Usage Statistics  
as of February 2006

Total jobs run 37,101

Median CPUs for single job 17

Mean CPUs for single job 22

Maximum CPUs for single job 144

Total CPU time 21,421 days 6 hours

Median job duration 84 sec

Mean job duration 31 min 17 sec

Max job duration 7 days 7 hours 2 min

FIGURE 29. LLGrid processor usage data for the Termi-
nal Doppler Weather Radar (TDWR) project. Development 
of TDWR algorithms required changing parameters on the 
basis of the results of the previous algorithm analysis runs. 
Thus one run had to be completed before the next one could 
start. A single run on a single processor took approximately 
eight to ten hours, while using eight to sixteen LLGrid pro-
cessors reduced the run time to thirty to sixty minutes. The 
LLGrid system allowed the algorithm developer to raise the 
number of engineering turns per 24-hour day from two to 
ten.
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on the proper set of coefficients for the best filtering 
performance. That is where LLGrid comes in; the sim-
ulations can each consume up to 750 hours of compu-
tational time, which are run on nights and weekends 
on 64 or more processors. The long simulation runs 
are often set by executing shorter ten-to-thirty-minute 
practice runs on 32 or fewer processors during the day. 
This provides greater confidence that the long runs 
will produce the expected results. 

Figure 32 is a usage plot of the project’s typical daily 
activity on the LLGrid system. It plots the time of the 
day on the x-axis versus the number of processors that 

this individual was using in an interactive, on-demand 
fashion. The work on the LLGrid system started af-
ter ten a.m., when several short 64-processor jobs were 
run to post-process and validate results from a previous 
run. During the early afternoon a four-processor job 
executed for more than two hours and prepared pa-
rameters for later in the day. In the late afternoon, sev-
eral more short-duration 64-processor debugging runs 
were executed in preparation for long runs that started 
just after six p.m. Being able to debug algorithms and 
validate results in an interactive, on-demand fashion 
facilitates more rapid time to results both with few 

FIGURE 30. Improvement in TDWR algorithms. This figure depicts weather data improvements enabled by 
computations executed on the LLGrid. After repeated runs, followed by parameter selection, the algorithms are 
able to discriminate gust fronts from weather that is not moving.

New algorithm
Gust front uncovered

Old algorithm
Gust front obscured by range overlay

La
tit

ud
e 

(d
eg

)

La
tit

ud
e 

(d
eg

)

R
ad

ia
l v

el
oc

ity
 (m

/s
ec

)

Longitude (deg) Longitude (deg)

FIGURE 31. Nonlinear equalization (NLEQ). The DARPA NLEQ program is developing algorithms to counter nonlineari-
ties in signal processing. The NLEQ team is also developing an application-specific integrated circuit that will improve 
signal-to-noise and distortion ratios of radar signals up to 10 dB.
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processors and with a full set of processors, and it en-
ables this project to run a set of long simulations every 
night rather than every two or three nights. 

These examples typify the value of the interactive, 
on-demand capabilities of the LLGrid system in en-

abling Lincoln Laboratory engineers and scientists to 
work more effectively and efficiently. However, there 
are a larger number of Laboratory staff members that 
have computationally demanding, non-MATLAB ap-
plications or require specialized cluster computing 
systems. The sidebar entitled “The LLGrid Project: 
Enterprise Cluster Computing Services” provides a de-
scription of the LLGrid project’s non-MATLAB users.

Another aspect of the user experience is how eas-
ily they are able to take their serial code and make it 
into parallel code to run on the LLGrid system. Table 
8 highlights several projects representative of the user 
base. Of particular interest are the columns showing 
the time to parallelize and what parallelization enables. 
The time to parallelize shows how quickly MATLAB 
code can be converted from serial code to parallel code 
as well as how quickly the user is able to get the paral-
lel code running on the LLGrid. 

the Future of lincoln laboratory  
Grid Computing

The current LLGrid system is providing on-demand, 
interactive, computational resources to Lincoln Labo-
ratory technical staff. The system currently consists of 
460 processors, has performed over 37,000 processor 
days of computation, and supports approximately 100 

FIGURE 32. LLGrid usage data for the NLEQ project, which 
requires a large number of simulations to converge on a 
proper set of coefficients for the NLEQ application-specific 
integrated circuit. These large simulations can take up to 750 
hours of computation time, and run on 64 or more proces-
sors. In addition, algorithm developers usually require many 
practice runs on 32 or fewer processors.
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Table 8. Selected pMatlab Applications*

Code	description	 Serial	/	parallel	dev	time	(hours)	 Parallelization	enables	more	or	faster

Missile and sensor simulations 2000 / 8 Higher fidelity radar

First-principles ladar 1300 / 1 Speckle image simulations

Analytic TOM leakage  40 / 0.4 Parameter space studies

Hercules metric TOM 900 / 0.75 Monte Carlo simulation

Coherent laser propagation 40 / 1 Run time

Polynomial coefficient approximation 700 / 8 Faster training algorithm

Ground motion tracker  600 / 3 Faster and larger datasets

Automatic target recognition 650 / 40 Target classes and scenarios

Hyperspectral image analysis  960 / 6 Larger datasets of images

* The first and last columns provide a brief description of the code and what the parallel version of the code has enabled. 
The middle column shows estimated time to write the original serial code and the additional time to parallelize the code 
with pMatlab and get it running well on the LLGrid system.
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users. Over the next few years, we see the following 
areas of need. First, we expect the user base to at least 
double to 200 users. Second, the system has to be able 
to scale to support special users that have extremely 
high computational demand. Finally, as the system 
grows, the software infrastructure needs to be easier to 
use at full scale. The following sections address how 
we plan to address these needs.

Future Hardware 

Recently, Lincoln Laboratory acquired a 1000-proces-
sor computer system as part of the DoD High Per-
formance Computing Modernization Program (HP-
CMP). This system will be principally used by three 
large programs that have extremely high computation-
al needs: DARPA NLEQ for detection of faint sig-
nals, MDA Project Hercules for target discrimination, 
and DARPA High Productivity Computing Systems 
(HPCS) program for petascale computing [47]. Figure 
33 illustrates these three research programs. Allowing 
these programs access to such a powerful computing 

resource will significantly accelerate development and 
testing of algorithms critical to defense against weap-
ons of mass destruction. 

The full HPCMP system will consist of 1000 pro-
cessors with one petabyte of storage. The system will 
be housed in Building F at Lincoln Laboratory, as il-
lustrated in Figure 34, and will allow for collateral se-
cret computations on a subset of the processors. While 
the principal purpose of the additional 1000-processor 
system is supporting the three large programs men-
tioned above, the rest of the LLGrid user base could 
also use the system during downtime. Additionally, 
the LLGrid team is constantly working on upgrading 
the entire system to support the growing user base.

Future Software

The LLGrid and the associated toolboxes discussed 
in this article provide the users with the ability to run 
parallel applications in an on-demand and interactive 
manner. However, the current software has some limi-
tations. First, very large datasets are still not accom-

FIGURE 33. HPCMP system to support three large programs. The 1000-processor system will be principally used by the DAR-
PA NLEQ Program, MDA Project Hercules, and the DARPA High Productivity Computing Systems (HPCS) program. Pro-
viding these programs access to such a powerful computational resource will accelerate development and testing of algo-
rithms critical to defense against weapons of mass destruction.
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t H e  L L g R i D  P Ro j e c t: 
e n t e R P R i S e  c L u S t e R  c o m P u t i n g  S e Rv i c e S

When the LLGrid project was ini-
tially formed, the team was aware 
of the diverse Laboratory comput-
ing requirements. Many projects 
develop software applications us-
ing technologies other than MAT-
LAB. Consequently, the LLGrid 
team has designed the LLGrid as 
an enterprise cluster—available 
across the Laboratory—that can 
accommodate applications writ-
ten with a number of languages 
and technologies. This cluster is 
a core service, funded and main-
tained by the Laboratory.

Additionally, a number of 
projects have special computing 
needs that cannot be satisfied by 
the LLGrid cluster. Such projects 
may require clusters built for their 
specific needs. Typically, members 
of these projects have little expe-
rience with cluster computing. 
The LLGrid team provides cluster 
consulting services to assist such 
projects.

Cluster Computing using the  
llGrid enterprise Cluster

The LLGrid enterprise cluster has 
the capability to run applications 
written with many different tech-
nologies. In addition to pMatlab 
and MatlabMPI, these technolo-
gies include the MATLAB Dis-
tributed Computing Toolbox, 
Message Passing Interface (MPI) 
and Java. A number of projects 

have used the LLGrid system in 
such a capacity.

For example, one of the efforts 
of the Weather Sensing group was 
to develop an optimized HPC so-
lution for generating high-resolu-
tion numerical weather prediction 
forecasts for experimental FAA 
air traffic management decision 
guidance tools. The LLGrid clus-
ter was used to examine various 
configurations of the numerical 
weather prediction model (e.g., 
Fortran compilers, MPI imple-
mentations, and I/O subsystems) 
to quantify the model and soft-
ware configuration settings that 
can enhance simulation speed 

[1]. Figure A shows an example 
of how a weather forecast region 
can be divided into sub-domains, 
with each sub-domain assigned to 
a different processor.

In another example, the Direct-
ed Energy group has used the LL-
Grid cluster to support a number 
of projects on laser beam propa-
gation and incoherent imaging 
through turbulent atmosphere. A 
Laboratory program called Paral-
lel Optical Propagation Software 
(POPS) models beam propaga-
tion and adaptive optics servos. 
Recently, POPS has been used 
to support the Directed Energy 
group’s Target-in-Loop adaptive 

optics program and the 
Communications and 
Information Technol-
ogy division’s High-Al-
titude Pseudo-Satellite 
program for developing 
free space communi-
cation between planes 
and satellites.

The LLGrid team 
encourages Laboratory 
staff members to uti-
lize LLGrid resources. 
In general, projects can 
use the LLGrid cluster 
rather than purchasing, 
building, and main-

FIGURE A. A sample distribution of a weather forecast region. This example 
has both row and column blocked distributions. Alternate distributions include 
row blocked or column blocked.
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taining their own cluster. Conse-
quently, projects that use the LL-
Grid cluster can dedicate more of 
their funds and staff time to their 
respective research needs. Howev-
er, there are cases in which build-
ing a cluster dedicated for a spe-
cific project may be necessary. In 
these instances, projects can bene-
fit from the LLGrid project’s clus-
ter consulting services.

Cluster Consulting services

Many projects have unique pro-
cessing requirements and are un-
able to take advantage of the LL-
Grid enterprise cluster, such as 
those in closed areas and those 
that require real-time, mobile, 
or remote processing capabili-
ties. These projects can benefit 
from the LLGrid project’s clus-
ter consulting services, which as-
sists groups with purchasing and 

building clusters tailored to their 
specific needs. These services in-
clude (1) assisting with select-
ing and purchasing hardware and 
software; (2) providing a standard 
cluster image, including a pre-
configured operating system and 
automated cluster management 
software; (3) training on building 
and maintaining clusters; and (4) 
assisting with specifying sufficient 
power and cooling for the cluster 
hardware.

A number of projects at the 
Laboratory have already benefited 
from the LLGrid’s cluster consult-
ing services. The Lincoln Multi-
mission ISR Testbed (LiMIT), 
developed by the RF Array Sys-
tems group, is an experimental ra-
dar testbed installed on a Boeing 
707. The LiMIT system includes 
a cluster computer installed in the 
cargo bay, running pMatlab for in-

flight synthetic aperture radar and 
GMTI processing. This ‘quick-
look’ cluster allows an onboard 
analyst to determine whether the 
radar is collecting useful data [2].

The Aerospace Sensor Technol-
ogy group has developed a pro-
totype image processing system 
that generates, displays, and ana-
lyzes 3D laser radar (ladar) data 
in real-time. To achieve real-time 
throughput, the imagery-genera-
tion algorithms are parallelized 
to run on a Linux cluster. Mul-
tiprocessor software plus blade 
hardware results in a compact, 
real-time imagery generation sys-
tem adjunct to an operating ladar 
[3]. Figure B shows a single frame 
generated by the real-time 3D la-
dar system, and a photograph of 
the system’s cluster computer.

By centralizing cluster admin-
istration expertise and standardiz-
ing cluster hardware and software, 
the LLGrid team helps staff avoid 
‘reinventing the cluster comput-
ing wheel’ at Lincoln Laboratory.
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FIGURE B. (left) A single image frame generated by the real-time 3D ladar sys-
tem, scanning various objects in the laboratory. (right) A photo of the cluster 
computer in the real-time ladar system.
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modated, thus requiring the user to manage the data 
size manually. Second, pMatlab still requires the user 
to specify maps for the program. Determining a set of 
efficient maps for a program is a non-trivial problem 
requiring understanding of parallel algorithm and ar-
chitectures. The following sections discuss the ongo-
ing research to eliminate these software limitations.

Out-of-Core Storage for Parallel MATLAB. Many 
modern scientific and engineering applications process 
datasets that cannot fit into memory on a single com-
puter. For example, synthetic aperture radar images 
generated by the Lincoln Multimission ISR Testbed 
(LiMIT) system, as described in the sidebar entitled 
“The LLGrid Project: Enterprise Cluster Computing 
Services,” can require several gigabytes of storage. Us-
ing a parallel computer, such as the LLGrid, is a com-
mon method of addressing this problem, utilizing its 
greater memory capacity. Another method is to use 
out-of-core methods, which store large datasets on 
disk storage and use physical memory to view a sec-

tion of the data at a time. Disk storage’s greater capac-
ity accommodates much larger datasets than can be 
addressed by even the largest parallel computer.

A number of technologies have been developed to 
provide programmers with an out-of-core capability. 
These technologies range from programming librar-
ies, (e.g., POOCLAPACK, Panda, and SOLAR) to 
compilers (e.g., PASSION). In fact, a number of these 
technologies are targeted toward parallel systems. For 
example, POOCLAPACK is an out-of-core extension 
to the PLAPACK library, a parallel linear algebra li-
brary. However, these technologies still require signifi-
cant programming expertise to benefit from them and 
hence are ill suited for rapid prototyping.

The Parallel MATLAB eXtreme Virtual Memory 
(pMatlab XVM) library combines pMatlab’s parallel 
programming model with out-of-core methods [14]. 
While other technologies have combined out-of-core 
methods with parallel programming, the main innova-
tion of pMatlab XVM is the combination of the PGAS 

FIGURE 34. Floor plan of the shared computing facility. The figure depicts the arrangement of the LLGrid a, b, and 
HPCMP clusters. The floor plan is separated into an unclassified area (on the right), collateral secret area (in the 
middle), and an area reserved for future use (on the left). The unclassified area houses the a and b Grids and part 
of the HPCMP system. The rest of the HPCMP system is located in the collateral secret area.
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programming model with out-of-core techniques. Just 
as pMatlab enabled a new class of users, namely, engi-
neers and scientists, to benefit from parallel program-
ming to enhance performance of their applications, 
pMatlab XVM will enable these same users to benefit 
from out-of-core methods, allowing them to explore 
problem sizes that were previously unachievable. Table 
9 provides a comparison of various PGAS and out-of-
core technologies against pMatlab XVM.

pMatlab XVM uses hierarchical arrays to structure 
and swap data between memory and disk storage in 
a manner that is optimal for a particular algorithm, 
hiding the large amount of index bookkeeping typi-
cally required by out-of-core algorithms. The result is 

a capability that allows applications to use all available 
disk storage to accommodate extremely large datasets 
while leveraging multiple processors, with little sacri-
fice in programmability and performance.

pMatlab XVM introduces the distributed out-of-core 
array, or doocmat. The doocmat retains the properties 
of pMatlab dmat while adding the capability to parti-
tion data owned by a processor and manage which sec-
tions are stored in memory or on the disk. The dooc-
mat is a hierarchical array, organized as a 2-level tree, 
as shown in Figure 35. The root of the tree is called 
the global matrix. Each processor contains a copy of 
the global matrix object, which stores information on 
how the overall matrix is distributed between proces-
sors. On each processor, the global matrix points to a 
leaf doocmat, called an out-of-core matrix. The out-of-
core matrix stores information on how data owned by 
the local processor are divided into core blocks, man-
ages which core blocks are stored in memory or on the 
disk, and holds the core block stored in memory.

Each level in the hierarchy requires its own map 
to describe how data at that level are distributed. The 
global map describes how to distribute the global ma-
trix among processors, similar to dmat maps. The out-
of-core map describes how to distribute the out-of-core 
matrix on each processor into core blocks. The global 
and out-of-core maps are then combined into a single 
map object, as shown in Figure 36.

Just as different algorithms have different optimal 
distributions, they may also have different optimal 
data access patterns. Consequently, pMatlab XVM 
provides a small, simple-to-use API that allows the 

Table 9. A Comparison of PGAS and Out-of-Core 
Technologies against pMatlab XVM

	 Technology	 PGAS	 Out	of 	core

 POOCLAPACK × ✓

 Panda × ✓

 SOLAR × ✓

 PASSION × ✓

 High Performance Fortran ✓ ×

 Unified parallel C ✓ ×

 VSIPL++ ✓ ×

 pMatlab ✓ ×

 pMatlab XVM ✓ ✓

P0 P1 P2 P3

Core block
(in core)

Global matrix

Core block
(out of core)

Processors

Out-of-core
matrices

FIGURE 35. Hierarchical matrix. The hierarchical matrix, or 
doocmat, retains the properties of the pMatlab distributed 
array, or dmat, while adding the capability to partition data 
owned by a processor and managing which sections are 
stored in memory or on disk.

Global map

Out-of-core map

doocmat map

+

=

P0 P1 P2 P3

FIGURE 36. Hierarchical map. Each level of the hierarchy of 
the hierarchical matrix requires its own map to describe how 
the data are distributed. The hierarchical map consists of the 
global map, which describes how the array is distributed be-
tween processors, and the out-of-core map, which describes 
how the array is distributed between the disk and memory on 
each processor.



• bliss, bond, kepner, kim, and reuther
Interactive Grid Computing at Lincoln Laboratory

206 LINCOLN LABORATORY JOURNAL VOLUME 16, NUMBER 1, 2006

programmer to easily manipulate doocmat objects by 
selecting core blocks to swap between memory and 
disk. This gives pMatlab XVM the flexibility to imple-
ment a variety of algorithms for processing large data-
sets while retaining pMatlab’s ease of use.

As modern digital receivers move well into the GHz 
sampling regime, it is now common to have terabytes 
of data that need to be processed coherently. We have 
applied pMatlab XVM to the HPC Challenge FFT (as 
discussed in the section on High Performance Com-
puting Challenge benchmarks). The results, summa-
rized in Figure 37, show that the pMatlab XVM im-
plementation of the FFT benchmark is easy to write 
and understand, requires few lines of code, and incurs 
a relatively small performance overhead while per-
forming a one-terabyte FFT. Table 10 shows software-
lines-of-code counts for the FFT benchmark for four 
implementations: serial MATLAB, pMatlab, pMatlab 
XVM and C+MPI. These results show that even the 
pMatlab XVM implementation requires over an or-
der-of-magnitude fewer lines of code than the non–
out-of-core C+MPI implementation. Figure 37 shows 
performance of the FFT benchmark for increasing in-
put sizes. Note that for a given number of processors, 
as input size increases pMatlab XVM performance 
does not degrade but remains flat.

We plan to apply pMatlab XVM to the full HPC 

Challenge benchmark suite. If we use next-generation 
hardware, problem sizes a factor of 100 to 1000 times 
larger should be feasible. We are also transitioning 
this technology to several DoD signal processing ap-
plications. Some DoD applications can process large 
datasets offline, after data collection. However, other 
applications require the ability to perform ultra-long 
FFTs in real time during data collection. The flexibil-
ity of software technologies like pMatlab XVM allows 
hardware designers to experiment with various FFT 
parameters before implementing the design in hard-
ware [15].

Automatic Mapping. Throughout this article we 
have discussed a number of parallel MATLAB capa-
bilities. The first parallel MATLAB library developed 
at Lincoln Laboratory was MatlabMPI, which enabled 
parallel processing in MATLAB. However, it required 
users to use explicit message passing and significantly 

FIGURE 37. pMatlab XVM HPC Challenge FFT Performance. The figure plots size of the vec-
tor input into the FFT on the x-axis and performance in gigaflops on the y-axis. Numbers next to 
each data point indicate the number of processors used for the given input size. For pMatlab and 
C+MPI implementations, each data point represents the maximum problem size possible on the 
indicated number of processors. For example, pMatlab required 64 processors to perform the FFT 
on a 235-byte vector, while pMatlab XVM performed the same size computation on 8 processors.

Table 10. Software-Lines-of-Code Counts for the 
Four Versions of the HPC Challenge  

FFT Benchmark

 MATLAB pMatlab  pMatlab XVM  C+MPI 
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reduced the ease of programming. Following Mat-
labMPI, pMatlab was developed, which abstracts 
away the message passing layer by introducing maps. 
While pMatlab significantly increases the ease of pro-
gramming, compared to MatlabMPI, it still requires 
users to specify maps. Determining an efficient map 
for a particular computation is a non-trivial problem 
requiring familiarity with the underlying architecture 
and the characteristics of the computation. The prob-
lem becomes even more difficult if there are multiple 
computational stages in a program, since the best map 

for a single operation might not be the best map in 
the global program flow context.

Let us consider the simple program similar to the 
HPC Challenge FFT benchmark illustrated in Figure 
38. The code in Figure 38(a) (lines 7–8) and Figure 
38(b) (lines 5–6) performs (1) an FFT along columns 
of matrix A and stores the result in B; and (2) an 
FFT along rows of matrix B and stores the result in 
C. Consider the maps in Figure 38(a), lines 2–3. The 
first map splits matrix A along columns (line 4); the 
second map splits matrices B and C along rows (lines 
5–6). This is clearly the locally optimal mapping for 
each of the two FFT operations—the computation is 
minimized. However, these maps require a full cor-
ner turn, or redistribution from column-wise map to 
row-wise map, on line 7 during the assignment of the 
result of the first FFT to matrix B. The corner turn 
requires an all-to-all communication and could be an 
expensive operation on a low latency system. A better 
mapping for the program might use fewer processors 
for one or both of the FFTs.

In order to balance the communication and com-
putation, the writer of the program has to be aware 
of the properties of the parallel system and the paral-
lel algorithms being developed. The users of pMatlab 
tend to be physicists, mathematicians, and engineers 
rather than computer scientists. Abstracting the map-
ping interface from the users greatly reduces the level 
of computer science and parallel programming exper-
tise needed to write parallel MATLAB programs.

pMapper is designed with two primary goals in 
mind: (1) ease of programming and (2) optimized 
time to solution [13]. A key design concept of the 
pMapper architecture is lazy evaluation, which allows 
pMapper to collect as much information as possible 
about the program structure prior to assigning maps 
to the numerical arrays. Having access to information 
about program structure allows pMapper to produce 
optimized mappings and thus optimized time to solu-
tion. Like pMatlab, pMapper takes advantage of ob-
ject oriented programming. This allows the users to 
simply annotate the numerical arrays to be considered 
for distribution. The annotation creates objects that 
store necessary information about the arrays. The ob-
ject creation is transparent to the user and satisfies the 
ease of programming goal.

%  Initialize variables
1. M=…; N=…;
%  Create distributed arrays
2. A=rand(M, N, p);
3. B=zeros(M, N, p);
4. C=zeros(M, N, p);
%  2-D FFT
5. B(:,:)=fft(A,[],1); %FFT along columns
6. C(:,:)=fft(B,[],2); %FFT along rows
%  Print out C
7. C

%  Initialize variables
1. M=…; N=…;
%  Create maps
2. map1=map([1 4], {}, [0:3]);
3. map2=map([4 1], {}, [4:7]);
%  Create distributed arrays
4. A=rand(M, N, map1);
5. B=zeros(M, N, map2);
6. C=zeros(M, N, map2);
%  2-D FFT
7. B(:,:)=fft(A,[],1); %FFT along columns
8. C(:,:)=fft(B,[],2); %FFT along rows
%  Print out C
9. C

(a)

(b)

FIGURE 38. pMatlab and pMapper code segments. (a) The 
pMatlab code segment performs similar computation to the 
HPC Challenge FFT. Lines 2 and 3 define maps for arrays 
declared in lines 4, 5, and 6. Line 7 performs an FFT along 
columns; line 8 performs an FFT along rows. Both map1 and 
map2 are locally optimal maps for the computation that fol-
lows, but not necessarily globally optimal maps for the en-
tire program. (b) The pMapper code segment is functionally 
equivalent to the pMatlab code segment in part a; however, 
map definitions are no longer necessary. Instead, the array 
constructors are tagged with a parallel tag p, indicating to 
pMapper that arrays A, B, and C should be considered for 
distribution.
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Eliminating maps and replacing them with anno-
tations raises the level of abstraction. Just as pMatlab 
abstracted away the Message Passing Interface, pMap-
per abstracts away the mapping interface, as shown in 
Figure 39. Figure 38(b) is the pMapper code that is 
functionally equivalent to the pMatlab code in Figure 
38(a). 

The pMapper code looks essentially identical to 
regular MATLAB code, with the exception of the ad-
dition of the parallel tags, p. The parallel tags are in-
herent variables in the library and, when passed to an 
array constructor, indicate to the mapping system that 
the associated numerical array should be considered 
for distribution. For example, in Figure 38(b), arrays 
A, B, and C are tagged and will be considered for dis-
tribution.

Automatic program optimization is an active area 
of research. In order to determine where pMapper fits 
into the current research, we develop a taxonomy of 
automatic mapping approaches. We use four charac-

teristics in our classification scheme, as illustrated in 
Figure 40.

Let us consider each of the characteristics in detail. 
Concurrency could be either serial or parallel. Serial 
concurrency [48] implies that the automatic mapper 
is mapping into the serial memory hierarchy of the 
system. On the other hand, parallel concurrency [49] 
implies that the mapper is searching for the best map-
ping onto a distributed architecture. Support layer de-
fines in which software layer the automatic mapper is 
implemented. The automatic mapper could be imple-
mented in the compiler layer [50, 51] or in middleware 
layer [52, 48]. Code analysis specifies whether static or 
dynamic code analysis is performed. Static code analy-
sis [48] implies looking at code as text, while dynamic 
code analysis [53] considers the behavior of the code 
at run time. The last category, optimization window, 
specifies whether the automated performance tuning 
is performed on a single function (locally) [50, 48] or 
the entire program flow (globally) [54].

FIGURE 39. Evolution of parallel programming. The graph plots level of abstraction on the x-axis against ease of program-
ming on the y-axis. MatlabMPI requires explicit message passing and thus has the lowest level of abstraction and ease of 
programming. pMatlab abstracts the message passing layer, but requires explicit map definitions. pMapper, which has the 
highest level of abstraction and ease of programming, and which assumes the user is not a parallel programmer, provides 
the user with implicit parallelism by abstracting the maps.
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map([2 2],{},[0:3])

B(:,:)=fft(A)

<parallel tag>

pMapper

B(:,:)=fft(A)
my_rank=MPI_Comm_rank(comm);
if (my_rank==0)|(my_rank==1)|(my_rank==2)|(my_rank==3)
  A_local=rand(M,N/4);end
if (my_rank==4)|(my_rank==5)|(my_rank==6)|(my_rank==7)
  B_local=zeros(M/4,N);end
A_local=fft(A_local);
tag=0;
if (my_rank==0)|(my_rank==1)|(my_rank==2)|(my_rank==3)
  start=1;
  len=M/4;
  for dest_rank=4:7
    last=start+len-1;
    MPI_Send(dest_rank,tag,comm,A_local(start:last,:));
    start=last+1;
  end
end
if (my_rank==4)|(my_rank==5)|(my_rank==6)|(my_rank==7)
  start=1;
  len=N/4;
  for recv_rank=0:3
    last=start+len-1;
    B_local(:,start:last)=MPI_Recv(recv_rank,tag,comm);
    start=last+1;
  end
end
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Some approaches that perform local optimization 
include FFTW [50] and ATLAS [48]. FFTW opti-
mizes the performance of FFTs, while ATLAS consid-
ers a variety of linear algebra routines. FFTW address-
es the problem at the compiler level and optimizes at 
both serial and parallel concurrency, while ATLAS is 
middleware that optimizes at serial concurrency. PLA-

PACK [49] addresses the parallel concurrency optimi-
zation of individual linear algebra routines. The Dy-
namo project [53] addresses the problem of dynamic 
code optimization for serial programs. Additionally, 
the SPIRAL [55] project has made significant impact 
on automatic tuning of digital signal processing algo-
rithms.

pMapper can be classified as having parallel con-
currency, written at middleware layer, performing dy-
namic code analysis and global optimization. The key 
advantage of the pMapper framework over other exist-
ing approaches is that it performs both dynamic code 
analysis and global (program flow) optimization, while 
maintaining the simplicity of the interface. 

We tested the pMapper approach on a sample ap-
plication similar to the one in Figure 38(b) with an 
additional matrix multiply. Figure 41 shows both 
the speedup curve and the output maps produced by 
pMapper. This application has a high communica-
tion-to-computation ratio and is made up of impor-
tant kernels present in many signal processing codes. 
The results were obtained by using simulated timing 

FIGURE 40. Taxonomy of automatic mapping approaches, 
which can be classified by using these four characteristics 
highlighted in the figure. pMapper is mapped onto a paral-
lel architecture, is implemented in middleware, performs dy-
namic code analysis, and results in global optimization. 
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FIGURE 41. (a) Speedup versus number of processors. Speedup is defined as (serial execution time)/(parallel execution time). 
The black line illustrates optimal speedup, which is commonly achieved by embarrassingly parallel computations, or computa-
tions that require no communication. The red line illustrates speedup achieved by the application mapped with pMapper. Even 
though the application has a high communication-to-computation ratio, it achieves near linear speedup. (b) Simulated map-
ping results. Each line corresponds to the mappings and time (Tp) produced by pMapper for a given number of processors. The 
blocks represent arrays and the ovals represent operations performed on those arrays. For the one processor case, the map-
pings are intuitive—the whole application is mapped onto one processor. On two processors, arrays A and B are distributed be-
tween two processors and C, D, and E are mapped onto one processor. The four-processor case truly illustrates the global map-
ping nature of the algorithm. The maps for A and B are column-wise maps that are optimal for the column-wise FFT; however, 
the map for C benefits the matrix multiply operation and not the row-wise FFT of which C is the output. For the eight-processor 
and eleven-processor cases, the maps are similar to the four-processor maps.
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data that described a low-latency architecture, e.g., an 
embedded computing system. Consider the maps in 
Figure 41(b). The rectangles in the figure represent 
numerical arrays, the ovals represent operations on 
the arrays. Specifically, array A is the input into the 
first FFT, array B is the output of the first FFT and 
the input into the second FFT, and so on. Each color 
represents a different processor, so the color coding of 
the arrays represents how the arrays are mapped. The 
maps produced for this sample code demonstrate that 
the mapper is performing global optimization. The 
best map for the output of the row FFT operation, nu-
merical array C, would be a map along rows; however, 
the mapper picks a 2 × 2 block map that benefits the 
subsequent matrix multiply operation. These results 
illustrate that while pMapper was originally designed 
for pMatlab running on a cluster, it also shows great 
promise as a mapping tool for embedded systems.

summary

In order to address algorithm development challenges 
at Lincoln Laboratory, we have developed the LLGrid 
system to provide users with parallel computing ca-
pability without increasing code development costs. 
The pMatlab and gridMatlab libraries were developed 
to allow users to write and launch parallel MATLAB 
programs as easily as writing and launching MAT-
LAB programs on their desktops. The HPC Challenge 
benchmarks and user experiences show that the pMat-
lab library provides significant improvement in perfor-
mance without significant code increases. The move 
of the LLGrid system to the F1 shared computing fa-
cility further establishes the system as a production re-

source. Additionally, acquisition of the new 1000-pro-
cessor system will allow for significant improvement 
in algorithm development for defense against weapons 
of mass destruction. The advanced research on parallel 
technologies such as out-of-core and automatic map-
ping will aid in algorithm development both in MAT-
LAB and in other languages.
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Obtaining pMatlab and MatlabMPI

Lincoln Laboratory staff members can learn more about using pMatlab and MatlabMPI on the LLGrid cluster at the  
following intranet website.

http://llwww/LLGrid 

Readers of this article who are not affiliated with Lincoln Laboratory can freely obtain the pMatlab and MatlabMPI  
libraries from the Laboratory's external website.

http://www.ll.mit.edu/pMatlab

http://www.ll.mit.edu/MatlabMPI
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A P P e n D i x  A .  P Ro c e S S o R  i n D e x e D  tA g g e D 
fA m i Ly  o f  L i n e  S e g m e n t S  ( P i t fA L L S )

An efficient and general technique for data redistribu-
tion is necessary in order to support PGAS. We chose 
to use PITFALLS [56], which is a mathematical rep-
resentation of the data distribution. Additionally, this 
representation provides an algorithm for determining 
which pairs of processors need to communicate when 
redistribution is required and exactly what data needs 
to be sent. 

A PITFALLS P is defined by the following tuple:

 P = (l, r, s, n, d, p),

where l is the starting index, r is the ending index, s is 
the stride between successive values of l, n is the num-

ber of equally spaced and equally sized blocks of ele-
ments per processor, d is the spacing between values of 
l for successive processor FALLS, and p is the number 
of processors

The PITFALLS intersection algorithm is used to 
determine the necessary messages for redistribution. 
The algorithm can be applied to each dimension of 
the array, thus allowing efficient redistribution of arbi-
trary dimensional arrays. A detailed discussion of the 
algorithm and its efficiency is found elsewhere [56]. 
(Note that the PITFALLS tuple can be derived in a 
trivial manner from the map definition.)

A P P e n D i x  B .  c o D e  H i g H L i g H t S

randomaccess

Np	=	pMATLAB.comm_size;	%	Set	number	of	processors.
N	=	2^20;															%	Set	dimensions	of	array.

Tmap	=	map([1	Np],{},0:Np-1);			%	Create	row	map
%	Create	global	unsigned	int64	row	vector.
Table	=		zeros(1,N,Tmap,’uint64’);

Imy	=	global_block_range(X	table,2);	%	Local	index	ranges
Iall	=	global_block_ranges(X	table,2);		%	All	index	ranges.

%	Initialize	table	...

%	For	each	block	of	updates.

		ran	=	RandomAccess_rand(ran);	%	Generate	random	indices.
		I	=	double(bitand(ran,	TABLE_MASK))	+	1;	%	Compute	table	index.

		%	Find	indices	for	numbers	that	reside	on	rank	i	cpu	and	send.
		for	i_cpu	=	my_send_order
				j_cpu	=	find((I	>=	Iall(i_cpu+1,2))	&	(I	<=	Iall(i_cpu+1,3)));
				MPI_Send(i_cpu,	tag_number,	pMATLAB.comm,	ran(j_cpu));
		end
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		%	Concatenate	receives	from	all	processors.
		for	i_cpu=my_recv_order
				ran_recv	=	[ran_recv	MPI_Recv(i_cpu,	tag_number,	pMATLAB.comm)];
		end

		%	Compute	local	table	index	and	perform	vectorized	XOR	update.
		Ilocal	=	double(bitand(ran_recv,	TABLE_MASK))	-	Imy(1)	+	2;
		Table(Ilocal)	=	bitxor(Table(Ilocal),ran_recv);

high performance linpack (top500) 

function	[L,U,piv]	=	lu_parallel(A)
Np	=	pMATLAB.comm_size;	%	Set	number	of	processors.
my_index	=	pMATLAB.comm_rank	+	1;		%	Get	processor	index.
col_ranges	=	global_block_ranges(A,2);		%	Cols	belong	to	all	processors.

%	Get	sizes	and	local	part	of	A.
[m,n]	=	size(A);		Alocal	=	local(A);		nlocal	=	size(Alocal,2);

%	...	initialize	index	counters	...

for	p	=	1:Np	%	Loop	over	all	processors.
		p_col	=	col_ranges(p,3)	–	col_ranges(p,2)	+	1;	%	Cols	on	processor	p.
		if	(p	==	my	index)	%	Compute	the	LU	of	the	p-th	block.
	
				%	...	compute	index	sets	i	and	j	...

				[Alocal(i,j)	pivp]	=	dgetrf(Alocal(i,j));		%	Compute	local	LU	and	pivots.
				Lp	=	tril(Alocal(i,j));		%	Get	lower	part.

				%	Send	Lp	and	pivp	to	all	the	higher	processors	and	just	pivp	to	lower.
				MPI_Mcast(p-1,p:(Np-1),tag_higher,comm,Lp,pivp);
				MPI_Mcast(p-1,0:(p-1),tag_lower,comm,pivp);

				%	...	update	index	counters	...

		elseif	(my_index	>	p)	
				[Lp,pivp]	=	MPI_Recv(p-1,tag_higher,comm);	%	Receive	L	and	pivots
		elseif	(my_index	<	p)
				pivp	=	MPI_Recv(p-1,tag_lower,comm);	%	Receive	pivots.	
		end
		%	...	apply	pivots	and	weights	...
end
%	...	Select	L	and	U	...
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