

DR&E LLGrid Portal: Interactive Supercomputing for DoD
Albert Reuther, William Arcand, Chansup Byun, Bill Bergeron, Matthew Hubbell, Jeremy Kepner,

Andrew McCabe, Peter Michaleas, Julie Mullen, and Andrew Prout
{reuther, warcand, cbyun, bbergeron, mhubbell, kepner, amccabe, pmichaleas, jsm, aprout}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

May 20, 2010

Introduction1
High performance computing (HPC) uses supercomputers
and computer clusters to solve large computational
problems. To take advantage of HPC systems, users in
general need training in parallel computing techniques. This
is not particularly daunting for computational scientists.
Others, who could well take advantage of HPC, prefer not
to be distracted by needing to learn parallel computing
techniques; they continue to focus instead on their
particular fields of interest, thus leaving untapped the power
of HPC for their work. This project is designed to overcome
these traditional obstacles so that more DoD scientists and
engineers can take advantage of the HPC resources
available to them at the HPCMP’s (DoD HPC
Modernization Program) DoD Supercomputing Resource
Centers (DSRCs) [1]. The goal of the DR&E Portal project
is to make HPC resources easily accessible to all DoD
scientists and engineers regardless of their computational
background. The interactive, on-demand LLGrid computing
system [2,3,4] at MIT Lincoln Laboratory represents a
capability that has many elements of the objective DR&E
Portal. The LLGrid system has radically changed how
many Lincoln Laboratory project teams approach the
development of algorithms and simulations. As part of the
Defense Research and Engineering (DR&E) Portal
program, Lincoln Laboratory in partnership with ARL is
creating testbeds to demonstrate the feasibility of this
capability. The intent of the Portal interface is to provide
the look and feel of running applications on the desktop
when in reality they are running on a supercomputer. This
paper presents an overview of LLGrid, the DDR&E Portal
goals, and how LLGrid has been adapted to meet these
goals.

Lincoln Laboratory Grid (LLGrid)
One of the main design requirements of the LLGrid system
was to make HPC usage accessible to the entire Lincoln
technical staff by making use of HPC systems as easy as
using a personal computer. In striving to toward this goal,
we developed a system that takes advantage of the desktop
development environments (i.e., file system access and
integrated development environments like Matlab) with
which most engineers and scientists are already familiar.
At Lincoln we currently have over 400 users, which is

This work is sponsored by the United States Air Force under Air Force
contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed
by the United States Government.

greater than 20% of the entire technical staff. The vast
majority of these users utilize LLGrid in an interactive
supercomputing manner. As depicted in Figure 1,
interactive supercomputing involves large jobs that require
answers in minutes or hours and cannot tolerating waiting
in a queue.

Figure 1: Interactive supercomputing vs. classic
supercomputing and desktop computing. Interactive
supercomputing jobs require answers in minutes or hours but
cannot tolerate waiting in a queue. Classic supercomputing
jobs take hours to days to execute and can tolerate waiting in a
queue. Desktop computing jobs take minutes to run on a
desktop (e.g. algorithm proof-of-concept).

DR&E LLGrid Portal Prototype
Several considerations must be made in order to adapt the
LLGrid system to DoD supercomputing resources. These
considerations are mainly concerned with security:

• DoD systems require authentication with common
access card (CAC) credentials;

• Mounting network file systems via NFS, CIFS, etc.
across organizations has historically been difficult;

• DoD networks only allow certain network ports to pass
through routers and this varies by organization;

• The number of additional computer applications
installed on the desktop should be minimized; and

• The applications that users can execute on the HPC
system and file access of the HPC file system should
be limited.

With these security requirements in mind, we have
developed and/or implemented several unique LLGrid
components that enable the portal technology:

• CAC-enabled Apache WebDAV server,
• Linux file system watcher,
• gridMatlab for Portal, and
• grecurity kernel patches.

The next paragraphs will describe each of these
technologies.

Slide-1
Portal

LLGrid Interactive Supercomputing

•  Classic supercomputing: Jobs take hours/days to run but jobs tolerate
waiting in a queue

Days

Hours

Minutes

Seconds

C
o

m
p

u
ti

n
g

 T
im

e Classic
Supercomputing

Interactive
Supercomputing

Desktop Computing

1,000 1 100 10

Batch
Processing

Lincoln
Laboratory
“Sweet Spot”

•  Interactive supercomputing: Jobs are large requiring answers in
minutes/hours but can not tolerate waiting in a queue

•  Desktop computing: Jobs take minutes on a desktop
(e.g., algorithm proof-of-principles)

Processor (CPUs)

Web-based Distributed Authoring and Versioning
(WebDAV) is a set of web protocol extensions that enable
remote file system access over the SSL web port 443. All
modern operating systems including Windows 7, Linux,
and Mac OS X provide WebDAV support natively by
enabling WebDAV shares to be mounted as a network file
system. The Apache web server can be configured to
provide WebDAV access, but it did not include CAC
authentication. We added CAC authentication to the
Apache web server so that anyone with a CAC card can
authenticate and mount the prototype LLGrid file system
onto their computer via WebDAV.

We needed to avoid installing and enabling secure shell
(ssh) on each of the user desktops (especially the Windows
desktops), but we needed a way to get HPC system status,
launch jobs, abort jobs, and get job status [4] without
making a remote procedure call. By modifying the Apache
WebDAV server, we designed and implemented a Linux
file system watcher. The watcher monitors all file system
activities and executes actions depending on the activity
and filename. We have defined filename patterns and XML
file contents for getting HPC system status, launching jobs,
aborting jobs, and getting job status. When a matching
filename appear in the file system, the watcher executes
scheduler scripts and returns a response XML file into the
same folder as the activity file.

The third part of this effort was to modify gridMatlab to
write and read the aforementioned activity and response
XML files. The gridMatlab toolbox enables desktop Matlab
environments to interact with HPC schedulers to launch and
abort parallel Matlab jobs, get HPC system status, and get
job status.

The above technologies limit users to only execute the
applications for which XML-file based launching is
enabled. To further secure access to HPC system resources,
we have implemented the grsecurity kernel patches [6].
Grsecurity provides white list role-based access control
(RBAC) for all operating resources including file system
access, process tables, process status (/proc), stack memory,
socket access, etc. By white listing access to all resources
on the HPC system, we have highly granular resource
access control for each user and have monitoring capability
that can indicate user errors and system exploitation. With
these technologies, we have enabled the LLGrid system on
a prototype DSRC, and we are capable of deploying HPC
systems up to a protection level 2 (PL2), which enables
access for multiple programs with different need-to-know
levels at the same classification level on the same system.

Results
We have built a prototype Portal cluster at Lincoln
Laboratory and are currently testing the capability on
DREN with pre-alpha DoD users. Also, we have
benchmarked two MatlabMPI/pMatlab [5] applications on
the TX-2500 LLGrid system at Lincoln Laboratory that are
typical applications for DoD engineers and scientists. The
scaling results are shown in Figure 2. Application 1 (App1)
is a smaller application that we scaled up to 36 processors,

and it scaled well up to that number. Application 2 (App2)
is an application that we scaled up to 200 processors, and it
scaled superlinearly up to that number of processors. This
showed that for some typical DoD applications, there is
promise for them to scale well on an LLGrid interactive
HPC system.

Figure 2: The speedup of two typical DoD
pMatlab/MatlabMPI applications on the LLGrid TX-2500
system.

References
[1] DoD Supercomputing Resource Centers,

http://www.hpcmo.hpc.mil/cms2/index.php/hpccenters.

[2] N. Travinin Bliss, R. Bond, J. Kepner, H. Kim, and A.
Reuther, “Interactive Grid Computing at Lincoln
Laboratory,” Lincoln Laboratory Journal, Vol. 16, Number 1,
2006.

[3] A. Reuther, B. Arcand, T. Currie, A. Funk, J. Kepner, M.
Hubbell, A. McCabe, P. Michaleas, “TX-2500 – An
Interactive, On-Demand Rapid-Prototyping HPC System,”
HPEC 2007, Lexington, MA, Sep. 2009.

[4] A.Reuther, J. Kepner, A. McCabe, J. Mullen, N.T. Bliss, and
H. Kim, “Technical Challenges of Supporting Interactive
HPC,” In Proceedings of the High Performance Computing
Modernization Office (HPCMO) Users Group Conference
(UGC) 2007, Pittsburgh, PA, 18-22 June 2007.

[5] J. Kepner and N. Travinin, “Parallel Matlab: The Next
Generation,” HPEC 2003, Lexington, MA, Sept. 2003.

[6] grsecurity, http://www.grsecurity.org/.

Nprocs Linear
Speedu

p

App1 Max
Time
(secs)

App1
Average

Time
(secs)

App1
Speedu

p

App2 Max
Time
(secs)

1 1 178972.64 17897.64 1.00 176344.03
10 10 25247.58 17448.12 7.08
20 20 14825.30 8767.93 12.10
25 25 6088.68
36 36 7589.20 4832.97 23.60
50 50 3245.66

100 100 1673.52
200 200 803.99

!"

#!"

$!!"

$#!"

%!!"

%#!"

!" #!" $!!" $#!" %!!" %#!"

&'
((
)*

'"

+,'*-"

./0(12"&'(()*'"

3''$"&'(()*'"

3''%"&'(()*'"

