
Cloud Computing – Where ISR Data Will Go for Exploitation
Albert Reuther, Jeremy Kepner, Peter Michaleas, William Smith

{reuther, kepner, pmichaleas, william.smith}@ll.mit.edu
MIT Lincoln Laboratory, Lexington, MA 02420

May 21, 2009

Introduction1 Table 1: Comparison of cloud computing technologies

 Data Intensive
Computing

Utility
Computing

Goal Compute
architecture for
large scale data
analysis

Compute services
for outsourcing IT

Challenges
of Scale

Billions of
records/day,
trillions of stored
records,
petabytes of
storage

Concurrent,
independent users
operating across
millions of records
and terabytes of data

Key
Technologies

Google File
System,
MapReduce,
BigTable,
Hadoop,
Sector/Sphere

Service
virtualization, IT as
a Service, Platform
as a Service (PaaS),
Software as a
Service (SaaS)

The asymmetric confrontations that coalition forces have
faced in the past twenty years has demanded a greater
reliance on sophisticated intelligence technologies and data
products in order to gain greater situational awareness of
adversarial activities. Highly sophisticated SAR image
processing, cyber-warfare, and persistent surveillance
platforms are producing higher data rates and larger data
products that are increasingly becoming more difficult to
move from place to place for data and metadata
exploitation. Also the relationships between these data and
metadata products are becoming even more difficult to
correlate, synchronize, and register. The key to solving
these technological logjams is to move the data as
infrequently as possible and do all of the processing where
the data is being stored, including extracting the metadata
of the data. Further, this metadata should be collected in a
distributed data store for scalability in metadata ingestion
and exploitation. Several cloud computing technologies
deliver the infrastructure required for this type of
processing.

Defining Cloud Computing for ISR
The term cloud computing has been making many headlines
recently in the technical press. As with much technical
buzzword hype that is approaching the “peak of inflated
expectations” on the Gartner “hype cycle” [1], there is a
technical basis amidst all of the hype. With certain technical
areas that come under the umbrella of cloud computing, the
technical basis shows a great amount of promise for
exploiting ISR data and metadata products. But before we
assess the potential impact, we must be more specific about
two different types of cloud computing: utility computing
vs. data intensive computing. Table 1 compares these two
types of cloud computing.

Data Intensive Computing
The three main components of data intensive cloud
computing are: a distributed file system (e.g., Google File
System [2], Hadoop Distributed File System (HDFS) [3],
and Sector [4]), a computation paradigm (e.g., MapReduce
[5]), and distributed database-like hash stores (e.g., Google
BigTable [6] and Hadoop HBase [3]). Among the
distributed file systems, there is a further dichotomy: block-
based storage versus file-based storage. Block-based file

This work is sponsored by the United States Air Force under Air Force
contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed
by the United States Government.

systems like Google File System and Hadoop Distributed
File System partition larger files into blocks (>64MB by
default) and disseminate the blocks across data servers.
Conversely, file-based file systems store complete files on
data servers, regardless of size. All of these file systems are
intended for write-once, read-many access, and they can
replicate the files they contain; the default replication rate is
three, the original file and two replicas. While the file
systems usually support the deletion of files, it is often slow
since they are usually not designed for deletion.

Each of these distributed file systems are architected in the
following manner: they have one master computer node that
keeps track of where all of the files and replicas are stored
and one or more nodes that store the data. If a client
application wants to access a file, it must first contact the
master node to determine the location(s) of the file, and
then it must contact the data nodes to operate on the file.

The MapReduce parallel computing framework enables the
execution of codes, in which each of the processes does not
need to communicate with any other. Hadoop also has a
MapReduce capability, while the MapReduce environment
for Sector is called Sphere. To launch a MapReduce job, a
list of files is generated against which the code is to
execute. One Map job is dispatched for each file-block or
file that was specified. The resulting output of the Map jobs
can then be collected and combined by the Reduce jobs.

Finally the distributed database-like hash stores save data
objects using alphanumeric row and column indices and a
time stamp. The data objects can be anything though it is
designed to store smaller pieces of data; that is, it is not
intended for storing images or videos. If multiple entries are
made with identical row and column indices, the most
recent entries are kept, while older entries are discarded. It
is also possible to ask for a the data object for a specific
row and column index pair that is exactly or near a
particular timestamp, provided that it has not been
discarded. The two aforementioned database-like hash
stores are all built using a block-based distributed file
system for storing data.

For enterprise-wide ISR data processing and exploitation,
an effective way to architect the data intensive computing is
to use a file-based distributed file system for storing the ISR
data files, which include SAR images, E/O images, video,
and presentation files. Then MapReduce jobs are used to
extract metadata from the ISR data files and to store the
metadata instances in the database-like hash stores. ISR
analysts then use software tools to search the metadata
instances and the ISR data files for information and
relationships; the analysts can also retrieve ISR data files
directly from the file-based distributed file system.

LLGrid as a Cloud Testbed
Two of our efforts in data intensive cloud computing are the
building of a data intensive cloud testbed on LLGrid and
the development of D4M, a computational model that is
more capable than MapReduce.

With the aforementioned data ingest method in mind, we
have built a data intensive cloud computing testbed using
the TX-2500 LLGrid cluster at MIT Lincoln Laboratory
[7], of which each node includes two 3.2 GHz single-core
Intel Xeon CPUs, 8 GB of RAM, a 1.42 TB local RAID,
and two gigabit Ethernet interfaces. We have installed
Sector, Sphere, and the three components of the Hadoop
suite. We have tested some ingestion of data into both
Sector and HDFS, and we have tested the MapReduce,
Sphere and Hbase capabilities. Table 2 shows the sizes of
the distributed file systems that we have created on the
compute nodes of TX-2500. The replication factors were
set to the package defaults.

 Hadoop DFS Sector

Number of nodes
used

350 350

File system size 298.9 TB 452.7 TB

Replication factor 3 2

D4M – Dynamic Distributed Dimensional Data
Model
The MapReduce computational framework enables the
execution of embarrassingly parallel jobs. More complex
parallelism can be addressed with MapReduce by iterating

multiple times through the map and reduce phases, but this
turns out to be quite inefficient. D4M enables the efficient
execution of classic parallel jobs on a distributed cloud file
system by launching the processes of a parallel job in a data
location aware manner. Given a list of files in the
distributed cloud file system, D4M determines the nodes on
which to launch the processes of the parallel job so that all
file operations are local to each node; i.e., none of the data
to be processed must be transferred across nodes since the
transfer of the files can incur high latencies. So far, we have
demonstrated D4M by launching pMatlab/gridMatlab jobs
onto a distributed cloud file system. This concept can be
extended to a variety of other programming environments
including Java, parallel VSIPL++, PVL, etc.

We plan to present performance metrics of the D4M,
Sector/Sphere, and Hadoop technologies as a function of
processor and data scale.

References
[1] Hype cycle, http://en.wikipedia.org/wiki/Hype_cycle.

[2] S. Ghemawat, H. Gobioff, and S.T. Leung, “The Google File
System,” 19th ACM Symposium on Operating Systems
Principles, Lake George, NY, Oct. 2003.

[3] Apache Hadoop Project, http://apache.hadoop.org/.

[4] Y. Gu and R. Grossman, “Exploring Data Parallelism and
Locality in Wide Area Networks,” Workshop on Many-task
Computing on Grids and Supercomputers (MTAGS), co-
located with SC08, Austin, TX. Nov. 2008.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” OSDI'04: Sixth Symposium
on Operating System Design and Implementation, San
Francisco, CA, Dec. 2004.

[6] F. Chang, J. Dean, S. Ghemawat, et.al., “BigTable: A
Distributed Storage System for Structured Data,” OSDI'06:
Seventh Symposium on Operating System Design and
Implementation, Seattle, WA, Nov. 2006.

[7] A. Reuther, B. Arcand, T. Currie, A. Funk, J. Kepner, M.
Hubbell, A. McCabe, P. Michaleas, “TX-2500 – An
Interactive, On-Demand Rapid-Prototyping HPC System,”
HPEC 2007, Lexington, MA, Sep. 2009.

http://en.wikipedia.org/wiki/Hype_cycle
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://apache.hadoop.org/
http://sector.sourceforge.net/doc.html
http://sector.sourceforge.net/doc.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://www.ll.mit.edu/HPEC/agendas/proc07/agenda.html
http://www.ll.mit.edu/HPEC/agendas/proc07/agenda.html

