
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Evaluating the Productivity of a Multicore Architecture
Jeremy Kepner and Nadya Bliss {kepner,nt}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
Increased performance generally comes at the price of
increased programmer effort. However, some computer
architectures require less effort than others to achieve the
same level of performance. Evaluating this trade off
between performance and effort (i.e., productivity) for
different parallel multicore processors is important for
processor architects and users. This work presents one
approach for evaluating the productivity of a multicore
architecture based on the expected performance and
programming difficulty of various programming models
ranging from high level serial code (e.g., C++) to low
level parallel code (e.g. assembly and DMA). This
analysis indicates that small elements of a multicore
architecture can have a large impact on the shape of the
performance vs. effort curve for that architecture.

Introduction

The tradeoff between performance and
programmer effort is a fundamental
characteristic of High Performance Embedded
Computing (HPEC) systems. This tradeoff
encompasses three orders of magnitude in
effort and five orders magnitude in
performance (see Table 1).

Table 1: Approximate effort vs. performance.
Applications can be implemented with a variety of
interfaces with a clear tradeoff between effort and
performance.

Implementation Relative Relative
environment effort performance
Spreadsheet 1/30 1/100
Matlab, IDL, … 1/10 1/5
C++ 1/3 1/1.1
VSIPL, BLAS 2/3 1/1.05
C, Fortran 1 1
Assembly 3 2
VHDL 10 10
Standard cell 30 100
Custom VLSI 100 1000

Within the context of parallel multicore
architectures there are similar tradeoffs that
exist between performance and effort.
Examining this tradeoff is one way to evaluate
the productivity of a multicore architecture.
Such an assessment is valuable for both
multicore processor architects and users.

Architects seek to design processors that
deliver high performance with the least effort.
Likewise, users seek processors that will
deliver the required performance within the
required level of effort.

Parallel Programming Models

The principal programming challenge of a
multicore architecture is effectively utilizing
the parallel capabilities made available by the
architecture. A baseline for assessing multicore
productivity is conventional serial
programming. Theoretically, the highest
productivity architecture would be one that
would allow a serial program to achieve high
performance via simple recompilation by a
parallel compiler. Unfortunately, such an ideal
architecture/compiler technology is not
currently available. At the other extreme is the
expert “human compiler” who rewrites the
serial program using low level machine specific
assembly and DMA (direct memory access)
calls.

Table 2: Parallel programming approaches.
Estimated relative codes, fraction of programmers
and difficulty of various parallel programming
approaches

Parallel Relative Fraction of
approach code size programmers “Difficulty”
Serial 1 1.00 1
Multithread 1.1 0.95 1.15
Dist. Arrays 1.5 0.50 3
Hier. Arrays 2 0.10 20
DMA 10 0.05 200

In between these two extremes are the more
conventional parallel programming techniques.
The first of these techniques is the thread based
approach (e.g., OpenMP, pthreads, or Cilk),
that allows the programmer to quickly
implement parallel concurrency, but provides
less support for managing parallel data locality.
Next, come distributed array based approaches
(e.g., POOMA, VSIPL++, or GA) that require
the programmer to address data locality and

then derive concurrency from that locality).
Lastly, hierarchical distributed array
approaches have started to emerge (e.g.,
pMatlabXVM or PVTOL) that deal with data
locality across the memory hierarchy.
Estimates of the relative effort and expertise to
use these different technologies are shown in
Table 2. Expertise is quoted in terms of the
estimated fraction of programmers who can
effectively use the technology. Dividing effort
by expertise results in a quantity labeled
“difficulty”.

Multicore Architecture Assessment

One of the biggest questions in multitcore
architecture is whether or not to use
homogeneous or heterogeneous cores.
Consider two canonical multicore architectures.
The first architecture is a replicated
homogeneous RISC processing core (e.g., an
x86 or MIPS core) with a cache on each core.
The second architecture is a replicated
RISC/SIMD heterogeneous processing core
(e.g., a Cell or a x86/GPU hybrid) with a cache
for the RISC part and DMA into a local storage
for the SIMD unit(s).

To evaluate the architectures consider two
applications. The first is a SAR (Synthetic
Aperture Radar) application which relies on
large 2D FFTs. The second application is a
video processing application that relies on
rotating large images. The applications are
then “written” in each of the different parallel
programming approaches and the performance
is assessed on both architectures. Figure 1
shows the output of this analysis. There are a
number of details that emerge from this
analysis. In general, homogeneous systems
would appear to give higher performance at
modest programmer difficulty, while
heterogeneous systems give higher
performance at higher programmer difficulty.

The next step is to go beyond these baseline
systems and explore architectures that
potentially give better performance with less
programmer difficulty.

Figure 1: Estimated performance vs difficulty.
(A) = Serial, (B) = Multithreaded, (C) =
Distributed arrays, (D) = Hieararchical arrays, (E)
= Assmebly+DMA.

References
Cilk: supertech.csail.mit.edu/cilk/
GA: www.emsl.pnl.gov/docs/global/
OpenMP: www.openmp.org/
pMatlabXVM:

www.ll.mit.edu/HPEC/agendas/proc05/Day_
2/Presentations/1000_Kim.pdf

POOMA: acts.nersc.gov/pooma/
PVTOL: www.mit.edu/~kepner/PVTOL/
VSIPL++:

www.codesourcery.com/vsiplplusplus

http://www.openmp.org/
http://acts.nersc.gov/pooma/

	References

