
Slide-1
Multicore Productivity

MIT Lincoln Laboratory

Evaluating the Productivity of a
Multicore Architecture

Jeremy Kepner and Nadya Bliss

MIT Lincoln Laboratory

HPEC 2008
This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the author and are not

necessarily endorsed by the United States Government.

Presenter
Presentation Notes
Title Slide

MIT Lincoln Laboratory
Slide-2

Multicore Productivity

•

Architecture Buffet
•

Programming Buffet
•

Productivity Assessment

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-3

Multicore Productivity

1

10

100

10000

0.1 1 10 100 1000 10000

FPGA

DSP/RISC Core

GOPS/W

G
O

PS
/c

m
2

Standard-Cell
ASIC

1000
MIT LL VLSI

Full-Custom

For 2005AD 90 nm CMOS Process

Signal Processor Devices

Full
Custom

DSP/RISC
Core FPGA ASIC

1.0E+01

1.0E+03

1.0E+05

1.0E+07

1.0E+09

2005 2007 2009 2011 2013 2015

Full-Custom

Standard-Cell ASIC

FPGA

DSP/RISC Core

Year

G
O

PS
/W

 ×
G

O
PS

/c
m

2

1.0E+11

MIT LL VLSI

• Wide range of device technologies for signal processing systems
• Each has their own tradeoffs. How do we choose?
• Wide range of device technologies for signal processing systems
• Each has their own tradeoffs. How do we choose?

Presenter
Presentation Notes
Performance characteristics of different processing device technologies.

MIT Lincoln Laboratory
Slide-4

Multicore Productivity

Multicore Processor Buffet

• Wide range of programmable multicore processors
• Each has their own tradeoffs. How do we choose?
• Wide range of programmable multicore processors
• Each has their own tradeoffs. How do we choose?

Homogeneous Heterogeneous

Long
Vector

Short
Vector

• Intel Duo/Duo
• AMD Opteron
• IBM PowerX
• Sun Niagara
• IBM Blue Gene

• IBM Cell
• Intel Polaris

• nVidia
• ATI

• Cray XT
• Cray XMT
• Clearspeed

• Broadcom
• Tilera

Presenter
Presentation Notes
Taxonomy of different programmable multicore processors.

MIT Lincoln Laboratory
Slide-5

Multicore Productivity

Multicore Programming Buffet

• Wide range of multicore programming environments
• Each has their own tradeoffs. How do we choose?
• Wide range of multicore programming environments
• Each has their own tradeoffs. How do we choose?

Flat Hierarchical

object

word
• pThreads
• StreamIt
• UPC
• CAF

• Cilk
• CUDA
• ALPH
• MCF
• Sequouia

• VSIPL++
• GA++
• pMatlab
• StarP

• PVTOL
• pMatlabXVM

Presenter
Presentation Notes
Taxonomy of different multicore programming approaches.

MIT Lincoln Laboratory
Slide-6

Multicore Productivity

Performance vs Effort
Style Example Granularity Training Effort Performance

per Watt
Graphical Spreadsheet Module Low 1/30 1/100

Domain
Language

Matlab, Maple,
IDL

Array Low 1/10 1/5

Object Oriented Java, C++ Object Medium 1/3 1/1.1

Procedural
Library

VSIPL, BLAS Structure Medium 2/3 1/1.05

Procedural
Language

C, Fortran Word Medium 1 1

Assembly x86, PowerPC Register High 3 2

Gate Array VHDL Gate High 10 10

Standard Cell Cell High 30 100

Custom VLSI Transistor High 100 1000

• Applications can be implemented with a variety of interfaces
• Clear tradeoff between effort (3000x) and performance (100,000x)

– Translates into mission capability vs mission schedule

• Applications can be implemented with a variety of interfaces
• Clear tradeoff between effort (3000x) and performance (100,000x)

– Translates into mission capability vs mission schedule

Programmable Multicore
(this talk)

Presenter
Presentation Notes
Stop light chart for different programming approaches and processor technologies.

MIT Lincoln Laboratory
Slide-7

Multicore Productivity

Assessment Approach

• “Write” benchmarks in many programming environments on
different multicore architectures

• Compare performance/watt and relative effort to serial C

• “Write” benchmarks in many programming environments on
different multicore architectures

• Compare performance/watt and relative effort to serial C

Speedup vs Relative Code Size

10-1 100 101
10-3

10-2

10-1

100

101

102

103

Relative Code Size

Sp
ee

du
p

“All too often”
Java, Matlab,
Python, etc.

Traditional
Parallel Programming

Ref

Goal

R
el

at
iv

e
Pe

rf
or

m
an

ce
/W

at
t

Relative Effort

Presenter
Presentation Notes
Speedup vs. code size plot for analyzing different approaches.

MIT Lincoln Laboratory
Slide-8

Multicore Productivity

•

Environment features
•

Estimates
•

Performance Complexity

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-9

Multicore Productivity

Programming Environment Features

Technology UPC F2008 GA++ PVL VSIPL PVTOL Titanium StarP pMatlab DCT Chapel X10 Fortress
Organization Std

Body
Std
Body

DOE
PNNL

Lincoln Std Body Lincoln UC
Berkeley

ISC Lincoln Math-
works

Cray IBM Sun

Sponsor DoD DOE
SC

DOE Navy DoD
HPCMP

 DOE,
NSF

DoD DARPA DARPA DARPA DARPA

Type Lang
Ext

Lang
Ext

Library Library Library Library New
Lang

Library Library Library New
Lang

New
Lang

New
Lang

Base Lang C Fortran C++ C++ C++ C++ Java Matlab Matlab Matlab ZPL Java HPF
Precursors CAF STAPL,

POOMA
PVL,
POOMA

VSIPL++,
pMatlab

 pMatlab PVL,
StarP

pMatlab,
StarP

Real Apps 2001 2001 1998 2000 2004 ~2007 2002 2003 2005
Data Parallel Y Y Y Y Y Y Y Y Y Y Y Y Y
Block-cyclic 1D ND blk 2D 2D Y ND 2D 4D 1D ND ND
Atomic Y Y Y
Threads Y Y Y Y Y
Task Parallel Y Y Y Y Y Y Y Y
Pipelines Y Y Y Y
Hier. arrays Y Y Y Y Y Y
Automap Y Y Y
Sparse ? Y Y Y Y ? ?
FPGA IO Y Y

• Too many environments with too many features to assess individually
• Decompose into general classes

– Serial programming environment
– Parallel programming model

• Assess only relevant serial environment and parallel model pairs

• Too many environments with too many features to assess individually
• Decompose into general classes

– Serial programming environment
– Parallel programming model

• Assess only relevant serial environment and parallel model pairs

Presenter
Presentation Notes
Various instantiations of PGAS technologies.

MIT Lincoln Laboratory
Slide-10

Multicore Productivity

Dimensions of Programmability

• Performance
– The performance of the code on the architecture
– Measured in: flops/sec, Bytes/sec, GUPS, …

• Effort
– Coding effort required to obtain a certain level of performance
– Measured in: programmer-days, lines-of-code, function points,

• Expertise
– Skill level of programmer required to obtain a certain level of

performance
– Measured in: degree, years of experience, multi-disciplinary

knowledge required, …
• Portability

– Coding effort required to port code from one architecture to the next
and achieve a certain level of performance

– Measured in: programmer-days, lines-of-code, function points, …)
• Baseline

– All quantities are relative to some baseline environment
– Serial C on a single core x86 workstation, cluster, multi-core, …

Presenter
Presentation Notes
Programmability has many dimensions to consider. Quantifying can be difficult.

MIT Lincoln Laboratory
Slide-11

Multicore Productivity

Serial Programming Environments

Programming
Language

Assembly SIMD
(C+AltiVec)

Procedural
(ANSI C)

Objects
(C++, Java)

High Level
Languages

(Matlab)
Performance

Efficiency
0.8 0.5 0.2 0.15 0.05

Relative Code
Size

10 3 1 1/3 1/10

Effort/Line-of-
Code

4 hour 2 hour 1 hour 20 min 10 min

Portability Zero Low Very High High Low

Granularity Word Multi-word Multi-word Object Array

• OO High Level Languages are the current desktop state-of-the practice :-)
• Assembly/SIMD are the current multi-core state-of-the-practice :-(
• Single core programming environments span 10x performance and 100x

relative code size

• OO High Level Languages are the current desktop state-of-the practice :-)
• Assembly/SIMD are the current multi-core state-of-the-practice :-(
• Single core programming environments span 10x performance and 100x

relative code size

Presenter
Presentation Notes
Stop light chart for serial programming environments.

MIT Lincoln Laboratory
Slide-12

Multicore Productivity

Parallel Programming Environments

Approach Direct
Memory
Access
(DMA)

Message
Passing

(MPI)

Threads
(OpenMP)

Recursive
Threads

(Cilk)

PGAS
(UPC,

VSIPL++)

Hierarchical
PGAS

(PVTOL,
HPCS)

Performance
Efficiency

0.8 0.5 0.2 0.4 0.5 0.5

Relative Code
Size

10 3 1 1/3 1/10 1/10

Effort/Line-of-
Code

Very High High Medium High Medium High

Portability Zero Very High High Medium Medium TBD

Granularity Word Multi-word Word Array Array Array

• Message passing and threads are the current desktop state-of-the practice
:-|

• DMA is the current multi-core state-of-the-practice :-(
• Parallel programming environments span 4x performance and 100x

relative code size

• Message passing and threads are the current desktop state-of-the practice
:-|

• DMA is the current multi-core state-of-the-practice :-(
• Parallel programming environments span 4x performance and 100x

relative code size

Presenter
Presentation Notes
Stop light chart for parallel programming environments.

MIT Lincoln Laboratory
Slide-13

Multicore Productivity

re
la

tiv
e

sp
ee

du
p

relative effort

Assembly

Assembly
/DMA

C

C/DMA

C/MPI
C/threads

C/Arrays

C++

C++/DMA

C++
/MPI

C++/threads

C++/Arrays

Matlab

Matlab/MPI

Matlab/threads

Matlab/Arrays

Canonical 100 CPU Cluster Estimates

Parallel

Serial

• Programming environments form regions around serial environment• Programming environments form regions around serial environment

Presenter
Presentation Notes
Speedup vs. effort on a canonical 100 processor cluster.

MIT Lincoln Laboratory
Slide-14

Multicore Productivity

Relevant Serial Environments
and Parallel Models

Partitioning
Scheme

Serial Multi-
Threaded

Distributed
Arrays

Hierarchical
Arrays

Assembly
+ DMA

fraction of
programmers

1 0.95 0.50 0.10 0.05

Relative Code
Size

1 1.1 1.5 2 10

“Difficulty” 1 1.15 3 20 200

• Focus on a subset of relevant programming environments
– C/C++ + serial, threads, distributed arrays, hierarchical arrays
– Assembly + DMA

• “Difficulty” = (relative code size) / (fraction of programmers)

• Focus on a subset of relevant programming environments
– C/C++ + serial, threads, distributed arrays, hierarchical arrays
– Assembly + DMA

• “Difficulty” = (relative code size) / (fraction of programmers)

Presenter
Presentation Notes
Relevant environments for this analysis.

MIT Lincoln Laboratory
Slide-15

Multicore Productivity

Performance Complexity

• Performance complexity (Strohmeier/LBNL) compares
performance as a function of the programming model

• In above graph, point “G” is ~100x easier to program than
point “B”

Pe
rf

or
m

an
ce

None (serial) 1D - No Comm
(Trivial)

1D ND Block-
Cyclic

ND
Hierarchical

Good Architecture

Bad Architecture

G

B

Array
Word

Granularity

Presenter
Presentation Notes
Performance complexity is one approach to assessing architectures.

MIT Lincoln Laboratory
Slide-16

Multicore Productivity

•

Kuck Diagram
•

Homogeneous UMA
•

Heterogeneous NUMA
•

Benchmarks

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-17

Multicore Productivity

M0

P0

Single Processor Kuck Diagram

• Processors denoted by boxes
• Memory denoted by ovals
• Lines connected associated processors and memories
• Subscript denotes level in the memory hierarchy

Presenter
Presentation Notes
Simple single processor Kuck diagram.

MIT Lincoln Laboratory
Slide-18

Multicore Productivity

net0.5

M0

P0

M0

P0

M0

P0

M0

P0

Parallel Kuck Diagram

• Replicates serial processors
• net denotes network connecting memories at a level in the

hierarchy (incremented by 0.5)

Presenter
Presentation Notes
Multiprocssor processor Kuck diagram.

MIT Lincoln Laboratory
Slide-19

Multicore Productivity

Multicore Architecture 1: Homogeneous

Off-chip: 1 (all cores have UMA access to off-chip memory)
 On-chip: 1 (all cores have UMA access to on-chip 3D memory)
 Core: Ncore (each core has its own cache)

Off-chip: 1 (all cores have UMA access to off-chip memory)
 On-chip: 1 (all cores have UMA access to on-chip 3D memory)
 Core: Ncore (each core has its own cache)

SM1

SM net1

net0.5

M0

P0
1

M0

P0
0

M0

P0
2

M0

P0
3

M0

P0
63

SM2

SM net2

Presenter
Presentation Notes
Kuck diagram for a homogeneous multicore architecture.

MIT Lincoln Laboratory
Slide-20

Multicore Productivity

M0

P0

Multicore Architecture 2: Heterogeneous
Off-chip: 1 (all supercores have UMA access to off-chip memory)

 On-chip: N (sub-cores share a bank of on-chip 3D memory and 1 control processor)
 Core: Ncore (each core has its own local store)

Off-chip: 1 (all supercores have UMA access to off-chip memory)
 On-chip: N (sub-cores share a bank of on-chip 3D memory and 1 control processor)
 Core: Ncore (each core has its own local store)

SM2

SM net2

net1.5

SM1

SM net1

net0.5

M0

P0
1

M0

P0
N

SM1

SM net1

M0

P0
1

M0

P0

M0

P0
4

net0.5

Presenter
Presentation Notes
Kuck diagram for a heterogeneous multicore architecture.

MIT Lincoln Laboratory
Slide-21

Multicore Productivity

HPC Challenge SAR benchmark (2D FFT)

SAR

FFT FFTFFT FFT

FFT FFT

• 2D FFT (with a full all-to-all corner
turn) is a common operation in
SAR and other signal processing

• Operation is complex enough to
highlight programmability issues

• 2D FFT (with a full all-to-all corner
turn) is a common operation in
SAR and other signal processing

• Operation is complex enough to
highlight programmability issues

%MATLAB Code

A = complex(rand(N,M), ...
...rand(N,M));

%FFT along columns
B = fft(A, [], 1);
%FFT along rows
C = fft(B, [], 2);

Presenter
Presentation Notes
Short description of the 2D FFT in the SAR benchmark.

MIT Lincoln Laboratory
Slide-22

Multicore Productivity

Projective Transform

• Canonical kernel in
image processing
applications

• Takes advantage of
cache on single core
processors

• Takes advantage of
multiple cores

• Results in regular
distributions of both
source and destination
images

Presenter
Presentation Notes
Simple description of the projective transform.

MIT Lincoln Laboratory
Slide-23

Multicore Productivity

•

Implementations
•

Performance vs Effort
•

Productivity vs Model

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-24

Multicore Productivity

Case 1: Serial Implementation
COD
E

NOTES

Heterogeneous
Performance

Homogeneous
Performance

A = complex(rand(N,M), rand(N,M));

//FFT along columns
for j=1:M
A(:,j) = fft(A(:,j));

end

//FFT along rows
for i=1:N
A(i,:) = fft(A(i,:));

end

• Single threaded program

• Complexity: LOW

• Initial implementation to get the code
running on a system

• No parallel programming expertise required

• Users capable of writing this program:
100%

• Single threaded program

• Complexity: LOW

• Initial implementation to get the code
running on a system

• No parallel programming expertise required

• Users capable of writing this program:
100%

Execution
• This program will run on a single control processor

Memory
• Only off chip memory will be used

Execution
• This program will run on a single core

Memory
• Off chip, on chip chache, and local cache will be used

Presenter
Presentation Notes
Description of serial implementation of 2D FFT.

MIT Lincoln Laboratory
Slide-25

Multicore Productivity

Case 2: Multi-Threaded Implementation
COD
E

NOTES

Heterogeneous
Performance

Homogeneous
Performance

A = complex(rand(N,M), rand(N,M));
#pragma omp parallel ...
//FFT along columns
for j=1:M
A(:,j) = fft(A(:,j));

end
#pragma omp parallel ...
//FFT along rows
for i=1:N
A(i,:) = fft(A(i,:));

end

• Multi-threaded program: each thread
operated on a single column (row) of the
matrix

• Complexity: LOW

• Minimal parallel programming expertise
required

• Users capable of writing this program: 99%

• Multi-threaded program: each thread
operated on a single column (row) of the
matrix

• Complexity: LOW

• Minimal parallel programming expertise
required

• Users capable of writing this program: 99%

Execution
• This program will run on a all control processors

Memory
• Only off chip memory will be used
• Poor locality will cause cause a memory bottleneck

Execution
• This program will run on all cores

Memory
• Off chip memory, on chip cache, and local cache will be

used
• Poor locality will cause a memory bottleneck

Presenter
Presentation Notes
Description of threaded implementation of 2D FFT.

MIT Lincoln Laboratory
Slide-26

Multicore Productivity

Case 3: Parallel 1D Block Implementation
CODE

NOTES

mapA = map([1 36], {}, [0:35]); //column map
mapB = map([36 1], {}, [0:35]); //row map
A = complex(rand(N,M,mapA), rand(N,M,mapA));
B = complex(zeros(N,M,mapB), rand(N,M,mapB));
//Get local indices
myJ = get_local_ind(A);
myI = get_local_ind(B);
//FFT along columns
for j=1:length(myJ)
A.local(:,j) = fft(A.local(:,j));

end
B(:,:) = A; //corner turn
//FFT along rows
for i=1:length(myI)
B.local(i,:) = fft(B.local(i,:));

end

• Explicitly parallel program using 1D block
distribution

• Complexity: MEDIUM

• Parallel programming expertise required,
particularly for understanding data
distribution

• Users capable of writing this program: 75%

• Explicitly parallel program using 1D block
distribution

• Complexity: MEDIUM

• Parallel programming expertise required,
particularly for understanding data
distribution

• Users capable of writing this program: 75%

Distribution onto 4
processors

P0 P1 P2 P3

P0
P1
P2
P3

Heterogeneous
Performance

Homogeneous
Performance

Execution
• This program will run on all control processors

Memory
• Only off chip memory will be used

Execution
• This program will run on all cores

Memory
• Off chip memory, on chip cache, and local cache will be

used
• Better locality will decrease memory bottleneck

Presenter
Presentation Notes
Description of parallel arrays implementation of 2D FFT.

MIT Lincoln Laboratory
Slide-27

Multicore Productivity

mapHcol = map([1 8], {}, [0:7]); //col hierarchical map
mapHrow = map([8 1], {}, [0:7]); //row hierarchical map
mapH = map([0:7]); //base hierarchical map
mapA = map([1 36], {}, [0:35], mapH); //column map
mapB = map([36 1], {}, [0:35], mapH); //row map
A = complex(rand(N,M,mapA), rand(N,M,mapA));
B = complex(zeros(N,M,mapB), rand(N,M,mapB));
//Get local indices
myJ = get_local_ind(A);
myI = get_local_ind(B);
//FFT along columns
for j=1:length(myJ)
temp = A.local(:,j); //get local col
temp = reshape(temp); //reshape col into matrix
alocal = zeros(size(temp_col), mapHcol);
blocal = zeros(size(temp_col), mapHrow);
alocal(:,:) = temp; //distrbute col to fit into SPE/cache
myHj = get_local_ind(alocal);
for jj = length(myHj)

alocal.local(:,jj) = fft(alocal.local(:,jj));
end
blocal(:,:) = alocal; //corner turn that fits into SPE/cache
myHi = get_local_ind(blocal);
for ii = length(myHi)

blocal.local(ii,:) = fft(blocal.local(ii,:);
end
temp = reshape(blocal); //reshape matrix into column
A.local = temp; //store result

end
B(:,:) = A; //corner turn
//FFT along rows ...

Case 4: Parallel 1D Block Hierarchical
Implementation

CODE

• Complexity: HIGH
• Users capable of writing

this program: <20%

• Complexity: HIGH
• Users capable of writing

this program: <20%

P0 P1 P2 P3

P0
P1
P2
P3

reshape reshape

2D FFT

Heterogeneous
Performance

Homogeneous
Performance

Execution
• This program will run on all cores

Memory
• Off chip, on-chip, and local store memory will be used
• Hierarchical arrays allow detailed management of

memory bandwidth

Execution
• This program will run on all cores

Memory
• Off chip, on chip cache, and local cache will be used
• Caches prevent detailed management of memory

bandwdith

Presenter
Presentation Notes
Description of hierarchical arrays implementation of 2D FFT.

MIT Lincoln Laboratory
Slide-28

Multicore Productivity

Performance/Watt vs Effort
Pe

rf
or

m
an

ce
/W

at
t E

ffi
ci

en
cy

Programming Difficulty =
(Code Size)/(Fraction of Programmers)

Heterogeneous

Homogeneous

SAR 2D FFT

Projective
Transform

EDCA • Trade offs exist between
performance and programming
difficulty

• Different architectures enable
different performance and
programming capabilities

• Forces system architects to
understand device implications
and consider programmability

• Trade offs exist between
performance and programming
difficulty

• Different architectures enable
different performance and
programming capabilities

• Forces system architects to
understand device implications
and consider programmability

Programming Models

• C single threaded

• C multi-threaded

• Parallel Arrays

• Hierarchical Arrays

• Hand Coded Assembly

B

A

C

D

B

E

Presenter
Presentation Notes
Performance/watt vs effort for different architectures and different programming models.

MIT Lincoln Laboratory
Slide-29

Multicore Productivity

difficulty

pe
rf

or
m

an
ce

 sp
ee

du
p 100

10

1

0.1

acceptable

hardware limit
good

bad

Ψ~10

Ψ~10

Ψ~0.1

Ψ~0.1

Productivity

Defining Productivity

• Productivity is a ratio between utility to cost
• From the programmer perspective this is

proportional to performance over difficulty

Presenter
Presentation Notes
Productivity can be defined in terms of performance and programming difficulty.

MIT Lincoln Laboratory
Slide-30

Multicore Productivity

Productivity vs Programming Model
R

el
at

iv
e

Pr
od

uc
tiv

ity

EDCA
• Productivity
varies with
architecture and
application

• Homogeneous:
threads or
parallel arrays

• Heterogeneous:
hierarchical
arrays

• Productivity
varies with
architecture and
application

• Homogeneous:
threads or
parallel arrays

• Heterogeneous:
hierarchical
arrays

Programming Models

• C single threaded

• C multi-threaded

• Parallel Arrays

• Hierarchical Arrays

• Hand Coded Assembly

B

A

C

D

B

EProgramming Model

Heterogeneous

Homogeneous

SAR 2D FFT

Projective Transform

Presenter
Presentation Notes
Productivity vs programming model for different architecture and applications.

MIT Lincoln Laboratory
Slide-31

Multicore Productivity

Summary

• Many multicore processors are available

• Many multicore programming environments are available

• Assessing which approaches are best for which architectures is
difficult

• Our approach
– “Write” benchmarks in many programming environments on different

multicore architectures
– Compare performance/watt and relative effort to serial C

• Conclusions
– For homogeneous architectures C/C++ using threads or parallel

arrays has highest productivity
– For heterogeneous architectures C/C++ using hierarchical arrays has

highest productivity

Presenter
Presentation Notes
Summary.

	Evaluating the Productivity of a Multicore Architecture
	Outline
	Signal Processor Devices
	Multicore Processor Buffet
	Multicore Programming Buffet
	Performance vs Effort
	Assessment Approach
	Outline
	Programming Environment Features
	Dimensions of Programmability
	Serial Programming Environments
	Parallel Programming Environments
	Canonical 100 CPU Cluster Estimates
	Relevant Serial Environments�and Parallel Models
	Performance Complexity
	Outline
	Slide Number 17
	Slide Number 18
	Multicore Architecture 1: Homogeneous
	Multicore Architecture 2: Heterogeneous
	HPC Challenge SAR benchmark (2D FFT)
	Projective Transform
	Outline
	Case 1: Serial Implementation
	Case 2: Multi-Threaded Implementation
	Case 3: Parallel 1D Block Implementation
	Case 4: Parallel 1D Block Hierarchical Implementation
	Performance/Watt vs Effort
	Slide Number 29
	Productivity vs Programming Model
	Summary

