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Multicore Productivity
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• Wide range of device technologies for signal processing systems
• Each has their own tradeoffs.  How do we choose?
• Wide range of device technologies for signal processing systems
• Each has their own tradeoffs.  How do we choose?

Presenter
Presentation Notes
Performance characteristics of different processing device technologies.
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Multicore Processor Buffet

• Wide range of programmable multicore processors
• Each has their own tradeoffs.  How do we choose?
• Wide range of programmable multicore processors
• Each has their own tradeoffs.  How do we choose?

Homogeneous Heterogeneous

Long
Vector

Short
Vector

• Intel Duo/Duo
• AMD Opteron
• IBM PowerX
• Sun Niagara
• IBM Blue Gene

• IBM Cell
• Intel Polaris

• nVidia
• ATI

• Cray XT
• Cray XMT
• Clearspeed

• Broadcom
• Tilera 

Presenter
Presentation Notes
Taxonomy of different programmable multicore processors.



MIT Lincoln Laboratory
Slide-5

Multicore Productivity

Multicore Programming Buffet

• Wide range of multicore programming environments
• Each has their own tradeoffs.  How do we choose?
• Wide range of multicore programming environments
• Each has their own tradeoffs.  How do we choose?

Flat Hierarchical

object

word
• pThreads
• StreamIt
• UPC
• CAF

• Cilk
• CUDA
• ALPH
• MCF
• Sequouia

• VSIPL++
• GA++
• pMatlab
• StarP

• PVTOL
• pMatlabXVM

Presenter
Presentation Notes
Taxonomy of different multicore programming approaches.
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Performance vs Effort
Style Example Granularity Training Effort Performance

per Watt
Graphical Spreadsheet Module Low 1/30 1/100

Domain 
Language

Matlab, Maple, 
IDL

Array Low 1/10 1/5

Object Oriented Java, C++ Object Medium 1/3 1/1.1

Procedural 
Library

VSIPL, BLAS Structure Medium 2/3 1/1.05

Procedural 
Language

C, Fortran Word Medium 1 1

Assembly x86, PowerPC Register High 3 2

Gate Array VHDL Gate High 10 10

Standard Cell Cell High 30 100

Custom VLSI Transistor High 100 1000

• Applications can be implemented with a variety of interfaces
• Clear tradeoff between effort (3000x) and performance (100,000x)

– Translates into mission capability vs mission schedule

• Applications can be implemented with a variety of interfaces
• Clear tradeoff between effort (3000x) and performance (100,000x)

– Translates into mission capability vs mission schedule

Programmable Multicore
(this talk)

Presenter
Presentation Notes
Stop light chart for different programming approaches and processor technologies.



MIT Lincoln Laboratory
Slide-7

Multicore Productivity

Assessment Approach

• “Write” benchmarks in many programming environments on 
different multicore architectures 

• Compare performance/watt and relative effort to serial C

• “Write” benchmarks in many programming environments on 
different multicore architectures

• Compare performance/watt and relative effort to serial C

Speedup vs Relative Code Size
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•

 

Environment features
•

 

Estimates
•

 

Performance Complexity

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary
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Programming Environment Features

Technology UPC F2008 GA++ PVL VSIPL PVTOL Titanium StarP pMatlab DCT Chapel X10 Fortress 
Organization Std 

Body 
Std 
Body 

DOE 
PNNL 

Lincoln Std Body Lincoln UC 
Berkeley 

ISC Lincoln Math-
works 

Cray IBM Sun 

Sponsor DoD DOE 
SC 

DOE Navy DoD 
HPCMP 

 DOE, 
NSF 

DoD DARPA  DARPA DARPA DARPA 

Type Lang 
Ext 

Lang 
Ext 

Library Library Library Library New 
Lang 

Library Library Library New 
Lang 

New 
Lang 

New 
Lang 

Base Lang C Fortran C++ C++ C++ C++ Java Matlab Matlab Matlab ZPL Java HPF 
Precursors  CAF  STAPL, 

POOMA 
PVL, 
POOMA 

VSIPL++, 
pMatlab 

 pMatlab PVL, 
StarP 

pMatlab, 
StarP 

   

Real Apps 2001 2001 1998 2000 2004 ~2007  2002 2003 2005    
Data Parallel Y Y Y Y Y Y Y Y Y Y Y Y Y 
Block-cyclic 1D  ND blk 2D 2D Y ND 2D 4D 1D ND ND  
Atomic   Y         Y Y 
Threads Y  Y        Y Y Y 
Task Parallel   Y Y Y Y Y  Y  Y Y  
Pipelines   Y Y  Y   Y     
Hier. arrays      Y Y  Y  Y Y Y 
Automap    Y  Y   Y     
Sparse       ? Y Y Y Y ? ? 
FPGA IO     Y Y        

 

• Too many environments with too many features to assess individually
• Decompose into general classes

– Serial programming environment
– Parallel programming model

• Assess only relevant serial environment and parallel model pairs

• Too many environments with too many features to assess individually
• Decompose into general classes

– Serial programming environment
– Parallel programming model

• Assess only relevant serial environment and parallel model pairs

Presenter
Presentation Notes
Various instantiations of PGAS technologies.
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Dimensions of Programmability

• Performance
– The performance of the code on the architecture
– Measured in: flops/sec, Bytes/sec, GUPS, …

• Effort
– Coding effort required to obtain a certain level of performance
– Measured in: programmer-days, lines-of-code, function points,

• Expertise
– Skill level of programmer required to obtain a certain level of 

performance
– Measured in: degree, years of experience, multi-disciplinary 

knowledge required, …
• Portability

– Coding effort required to port code from one architecture to the next 
and achieve a certain level of performance

– Measured in: programmer-days, lines-of-code, function points, …)
• Baseline

– All quantities are relative to some baseline environment
– Serial C on a single core x86 workstation, cluster, multi-core, …

Presenter
Presentation Notes
Programmability has many dimensions to consider. Quantifying can be difficult.
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Serial Programming Environments

Programming
Language

Assembly SIMD 
(C+AltiVec)

Procedural 
(ANSI C)

Objects
(C++, Java)

High Level 
Languages

(Matlab)
Performance 

Efficiency
0.8 0.5 0.2 0.15 0.05

Relative Code 
Size

10 3 1 1/3 1/10

Effort/Line-of- 
Code

4 hour 2 hour 1 hour 20 min 10 min

Portability Zero Low Very High High Low

Granularity Word Multi-word Multi-word Object Array

• OO High Level Languages are the current desktop state-of-the practice :-)
• Assembly/SIMD are the current multi-core state-of-the-practice :-(
• Single core programming environments span 10x performance and 100x 

relative code size 

• OO High Level Languages are the current desktop state-of-the practice :-)
• Assembly/SIMD are the current multi-core state-of-the-practice :-(
• Single core programming environments span 10x performance and 100x 

relative code size

Presenter
Presentation Notes
Stop light chart for serial programming environments.
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Parallel Programming Environments

Approach Direct 
Memory 
Access 
(DMA)

Message 
Passing 

(MPI)

Threads 
(OpenMP)

Recursive 
Threads 

(Cilk)

PGAS
(UPC, 

VSIPL++)

Hierarchical 
PGAS 

(PVTOL, 
HPCS)

Performance 
Efficiency

0.8 0.5 0.2 0.4 0.5 0.5

Relative Code 
Size

10 3 1 1/3 1/10 1/10

Effort/Line-of- 
Code

Very High High Medium High Medium High

Portability Zero Very High High Medium Medium TBD

Granularity Word Multi-word Word Array Array Array

• Message passing and threads are the current desktop state-of-the practice 
:-| 

• DMA is the current multi-core state-of-the-practice :-(
• Parallel programming environments span 4x performance and 100x 

relative code size 

• Message passing and threads are the current desktop state-of-the practice 
:-|

• DMA is the current multi-core state-of-the-practice :-(
• Parallel programming environments span 4x performance and 100x 

relative code size

Presenter
Presentation Notes
Stop light chart for parallel programming environments.
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relative effort

Assembly

Assembly
/DMA

C

C/DMA

C/MPI
C/threads

C/Arrays

C++

C++/DMA

C++
/MPI

C++/threads

C++/Arrays

Matlab

Matlab/MPI

Matlab/threads

Matlab/Arrays

Canonical 100 CPU Cluster Estimates

Parallel

Serial

• Programming environments form regions around serial environment• Programming environments form regions around serial environment

Presenter
Presentation Notes
Speedup vs. effort on a canonical 100 processor cluster.
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Relevant Serial Environments 
and Parallel Models

Partitioning 
Scheme

Serial Multi- 
Threaded

Distributed
Arrays

Hierarchical
Arrays

Assembly
+ DMA

fraction of 
programmers

1 0.95 0.50 0.10 0.05

Relative Code 
Size

1 1.1 1.5 2 10

“Difficulty” 1 1.15 3 20 200

• Focus on a subset of relevant programming environments
– C/C++ + serial, threads, distributed arrays, hierarchical arrays
– Assembly + DMA

• “Difficulty” = (relative code size) / (fraction of programmers)

• Focus on a subset of relevant programming environments
– C/C++ + serial, threads, distributed arrays, hierarchical arrays
– Assembly + DMA

• “Difficulty” = (relative code size) / (fraction of programmers)

Presenter
Presentation Notes
Relevant environments for this analysis.
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Performance Complexity

• Performance complexity (Strohmeier/LBNL) compares 
performance as a function of the programming model

• In above graph, point “G” is ~100x easier to program than 
point “B”

Pe
rf
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None (serial) 1D - No Comm 
(Trivial)

1D ND Block- 
Cyclic

ND 
Hierarchical

Good Architecture

Bad Architecture

G

B

Array
Word

Granularity

Presenter
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•

 

Kuck Diagram
•

 

Homogeneous UMA
•

 

Heterogeneous NUMA
•

 

Benchmarks

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary
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M0

P0

Single Processor Kuck Diagram

• Processors denoted by boxes
• Memory denoted by ovals
• Lines connected associated processors and memories
• Subscript denotes level in the memory hierarchy

Presenter
Presentation Notes
Simple single processor Kuck diagram.
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net0.5

M0

P0

M0

P0

M0

P0

M0

P0

Parallel Kuck Diagram

• Replicates serial processors
• net denotes network connecting memories at a level in the 

hierarchy (incremented by 0.5)

Presenter
Presentation Notes
Multiprocssor processor Kuck diagram.
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Multicore Architecture 1: Homogeneous

Off-chip: 1 (all cores have UMA access to off-chip memory)
 On-chip: 1 (all cores have UMA access to on-chip 3D memory)
 Core: Ncore (each core has its own cache)

Off-chip: 1 (all cores have UMA access to off-chip memory)
 On-chip: 1 (all cores have UMA access to on-chip 3D memory)
 Core: Ncore (each core has its own cache)

SM1

SM net1

net0.5

M0

P0
1

M0

P0
0

M0

P0
2

M0

P0
3

M0

P0
63

SM2

SM net2

Presenter
Presentation Notes
Kuck diagram for a homogeneous multicore architecture.
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M0

P0

Multicore Architecture 2: Heterogeneous
Off-chip: 1 (all supercores have UMA access to off-chip memory)

 On-chip: N (sub-cores share a bank of on-chip 3D memory and 1 control processor)
 Core: Ncore (each core has its own local store)

Off-chip: 1 (all supercores have UMA access to off-chip memory)
 On-chip: N (sub-cores share a bank of on-chip 3D memory and 1 control processor)
 Core: Ncore (each core has its own local store)

SM2

SM net2

net1.5

SM1

SM net1

net0.5

M0

P0
1

M0

P0
N

SM1

SM net1

M0

P0
1

M0

P0

M0

P0
4

net0.5

Presenter
Presentation Notes
Kuck diagram for a heterogeneous multicore architecture.
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HPC Challenge SAR benchmark (2D FFT) 

SAR

FFT FFTFFT FFT 

FFT FFT

• 2D FFT (with a full all-to-all corner 
turn) is a common operation in 
SAR and other signal processing 

• Operation is complex enough to 
highlight programmability issues 

• 2D FFT (with a full all-to-all corner 
turn) is a common operation in 
SAR and other signal processing

• Operation is complex enough to 
highlight programmability issues

%MATLAB Code

A = complex(rand(N,M), ...
...rand(N,M));

%FFT along columns
B = fft(A, [], 1);
%FFT along rows
C = fft(B, [], 2);

Presenter
Presentation Notes
Short description of the 2D FFT in the SAR benchmark.
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Projective Transform

• Canonical kernel in 
image processing 
applications

• Takes advantage of 
cache on single core 
processors

• Takes advantage of 
multiple cores

• Results in regular 
distributions of both 
source and destination 
images

Presenter
Presentation Notes
Simple description of the projective transform.
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•

 

Implementations
•

 

Performance vs Effort
•

 

Productivity vs Model

Outline

• Parallel Design

• Programming Models

• Architectures

• Productivity Results

• Summary
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Case 1: Serial Implementation 
COD 
E

NOTES

Heterogeneous 
Performance

Homogeneous 
Performance

A = complex(rand(N,M), rand(N,M));

//FFT along columns
for j=1:M
A(:,j) = fft(A(:,j));

end

//FFT along rows
for i=1:N
A(i,:) = fft(A(i,:));

end

• Single threaded program

• Complexity: LOW

• Initial implementation to get the code 
running on a system 

• No parallel programming expertise required

• Users capable of writing this program: 
100% 

• Single threaded program

• Complexity: LOW

• Initial implementation to get the code 
running on a system

• No parallel programming expertise required

• Users capable of writing this program: 
100%

Execution
• This program will run on a single control processor

Memory
• Only off chip memory will be used

Execution
• This program will run on a single core

Memory
• Off chip, on chip chache, and local cache will be used

Presenter
Presentation Notes
Description of serial implementation of 2D FFT.
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Case 2: Multi-Threaded Implementation
COD 
E

NOTES

Heterogeneous 
Performance

Homogeneous 
Performance

A = complex(rand(N,M), rand(N,M));
#pragma omp parallel ...
//FFT along columns
for j=1:M
A(:,j) = fft(A(:,j));

end
#pragma omp parallel ...
//FFT along rows
for i=1:N
A(i,:) = fft(A(i,:));

end

• Multi-threaded program: each thread 
operated on a single column (row) of the 
matrix 

• Complexity: LOW

• Minimal parallel programming expertise 
required 

• Users capable of writing this program: 99%

• Multi-threaded program: each thread 
operated on a single column (row) of the 
matrix

• Complexity: LOW

• Minimal parallel programming expertise 
required

• Users capable of writing this program: 99%

Execution
• This program will run on a all control processors

Memory
• Only off chip memory will be used
• Poor locality will cause cause a memory bottleneck

Execution
• This program will run on all cores

Memory
• Off chip memory, on chip cache, and local cache will be 

used
• Poor locality will cause a memory bottleneck

Presenter
Presentation Notes
Description of threaded implementation of 2D FFT.
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Case 3: Parallel 1D Block Implementation
CODE

NOTES

mapA = map([1 36], {}, [0:35]); //column map
mapB = map([36 1], {}, [0:35]); //row map
A = complex(rand(N,M,mapA), rand(N,M,mapA));
B = complex(zeros(N,M,mapB), rand(N,M,mapB));
//Get local indices
myJ = get_local_ind(A);
myI = get_local_ind(B);
//FFT along columns
for j=1:length(myJ)
A.local(:,j) = fft(A.local(:,j));

end
B(:,:) = A; //corner turn
//FFT along rows
for i=1:length(myI)
B.local(i,:) = fft(B.local(i,:));

end

• Explicitly parallel program using 1D block 
distribution 

• Complexity: MEDIUM

• Parallel programming expertise required, 
particularly for understanding data 
distribution 

• Users capable of writing this program: 75%

• Explicitly parallel program using 1D block 
distribution

• Complexity: MEDIUM

• Parallel programming expertise required, 
particularly for understanding data 
distribution

• Users capable of writing this program: 75%

Distribution onto 4 
processors

P0 P1 P2 P3

P0
P1
P2
P3

Heterogeneous 
Performance

Homogeneous 
Performance

Execution
• This program will run on all control processors

Memory
• Only off chip memory will be used

Execution
• This program will run on all cores

Memory
• Off chip memory, on chip cache, and local cache will be 

used
• Better locality will decrease memory bottleneck

Presenter
Presentation Notes
Description of parallel arrays implementation of 2D FFT.
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mapHcol = map([1 8], {}, [0:7]); //col hierarchical map
mapHrow = map([8 1], {}, [0:7]); //row hierarchical map
mapH = map([0:7]); //base hierarchical map
mapA = map([1 36], {}, [0:35], mapH); //column map
mapB = map([36 1], {}, [0:35], mapH); //row map
A = complex(rand(N,M,mapA), rand(N,M,mapA));
B = complex(zeros(N,M,mapB), rand(N,M,mapB));
//Get local indices
myJ = get_local_ind(A);
myI = get_local_ind(B);
//FFT along columns
for j=1:length(myJ)
temp = A.local(:,j); //get local col
temp = reshape(temp); //reshape col into matrix
alocal = zeros(size(temp_col), mapHcol);
blocal = zeros(size(temp_col), mapHrow);
alocal(:,:) = temp; //distrbute col to fit into SPE/cache
myHj = get_local_ind(alocal);
for jj = length(myHj)

alocal.local(:,jj) = fft(alocal.local(:,jj));
end
blocal(:,:) = alocal; //corner turn that fits into SPE/cache
myHi = get_local_ind(blocal);
for ii = length(myHi)

blocal.local(ii,:) = fft(blocal.local(ii,:);
end
temp = reshape(blocal); //reshape matrix into column
A.local = temp; //store result

end
B(:,:) = A; //corner turn
//FFT along rows ...

Case 4: Parallel 1D Block Hierarchical 
Implementation

CODE

• Complexity: HIGH
• Users capable of writing 

this program: <20% 

• Complexity: HIGH
• Users capable of writing 

this program: <20%

P0 P1 P2 P3

P0
P1
P2
P3

reshape reshape

2D FFT

Heterogeneous 
Performance

Homogeneous 
Performance

Execution
• This program will run on all cores

Memory
• Off chip, on-chip, and local store memory will be used
• Hierarchical arrays allow detailed management of 

memory bandwidth

Execution
• This program will run on all cores

Memory
• Off chip, on chip cache, and local cache will be used
• Caches prevent detailed management of memory 

bandwdith

Presenter
Presentation Notes
Description of hierarchical arrays implementation of 2D FFT.
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Performance/Watt vs Effort
Pe
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Programming Difficulty = 
(Code Size)/(Fraction of Programmers)

Heterogeneous

Homogeneous

SAR 2D FFT

Projective
Transform

EDCA • Trade offs exist between 
performance and programming 
difficulty 

• Different architectures enable 
different performance and 
programming capabilities 

• Forces system architects to 
understand device implications 
and consider programmability 

• Trade offs exist between 
performance and programming 
difficulty

• Different architectures enable 
different performance and 
programming capabilities

• Forces system architects to 
understand device implications 
and consider programmability

Programming Models

• C single threaded

• C multi-threaded

• Parallel Arrays

• Hierarchical Arrays

• Hand Coded Assembly

B

A

C

D

B

E

Presenter
Presentation Notes
Performance/watt vs effort for different architectures and different programming models.
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difficulty
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p 100

10

1

0.1

acceptable

hardware limit
good

bad

Ψ~10

Ψ~10

Ψ~0.1

Ψ~0.1

Productivity

Defining Productivity

• Productivity is a ratio between utility to cost
• From the programmer perspective this is 

proportional to performance over difficulty

Presenter
Presentation Notes
Productivity can be defined in terms of performance and programming difficulty.
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Productivity vs Programming Model
R

el
at
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e 

Pr
od

uc
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ity

EDCA
• Productivity 
varies with 
architecture and 
application 

• Homogeneous: 
threads or 
parallel arrays 

• Heterogeneous: 
hierarchical 
arrays 

• Productivity 
varies with 
architecture and 
application

• Homogeneous: 
threads or 
parallel arrays

• Heterogeneous: 
hierarchical 
arrays

Programming Models

• C single threaded

• C multi-threaded

• Parallel Arrays

• Hierarchical Arrays

• Hand Coded Assembly

B

A

C

D

B

EProgramming Model

Heterogeneous

Homogeneous

SAR 2D FFT

Projective Transform

Presenter
Presentation Notes
Productivity vs programming model for different architecture and applications.
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Summary

• Many multicore processors are available

• Many multicore programming environments are available

• Assessing which approaches are best for which architectures is 
difficult

• Our approach
– “Write” benchmarks in many programming environments on different 

multicore architectures
– Compare performance/watt and relative effort to serial C

• Conclusions
– For homogeneous architectures C/C++ using threads or parallel 

arrays has highest productivity
– For heterogeneous architectures C/C++ using hierarchical arrays has 

highest productivity

Presenter
Presentation Notes
Summary.
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