

2D-3D Registration of Optical and Ladar Imagery for Real-Time Tracking

Andrew Mastin,^{1,2} Jeremy Kepner,¹ John Fisher III² ¹Lincoln Laboratory

²Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology, Cambridge MA 02139 mastin@csail.mit.edu kepner@ll.mit.edu fisher@csail.mit.edu

High Performance Embedded Computing (HPEC) Workshop

23-25 September 2008

This work is sponsored in part by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and not necessarily endorsed by the United States Government.

Overview

UAV with on-board 3D ladar imagery

Initial ladar-optical registration with feature detection and statistical registration

Registration updated by tracking feature points in video

Real-time tracking with occlusion reasoning from ladar imagery

- Commonly used for registration of multi-modal medical imagery
- Information theoretic similarity measure with optimization
- Machine learning approach

Fusion of Optical and Ladar Imagery

ladar_drape_demo.avi