

Photonic Many-Core Architecture Study

Nadya Bliss¹, Krste Asanović², Keren Bergman³, Luca Carloni³, Jeremy Kepner¹, Sanjeev Mohindra¹, Vladimir Stojanović⁴

¹*MIT Lincoln Laboratory,* ²*University of California Berkeley,* ³*Columbia University,* ⁴*MIT Research Laboratory of Electronics*

September 23rd, 2008

PM: Jagdeep Shah

This work is sponsored by DARPA under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

HPEC2008 1 NTBliss 9/29/2008

Outline

Introduction

- Logical Architecture Abstraction
- Modeling and Mapping
- Experiments and Results
- Summary

Emerging Device Trends

Emerging device technologies create a large parameter space of possible future architectures

MIT Lincoln Laboratory

Benefits of Photonic Interconnects

ELECTRONICS

TO MEMORY

- Communication to memory banks is chip power and pin/wire density limited
- Poor scaling of on-chip mem controllers with cores
- At most 3-6 Tb/sec in the next few years

CORE-TO-CORE

- Buffer, receive and re-transmit at every switch
- Power dissipation grows with data rate

- Modulate/receive data once per communication
- Scalable, low power switch fabric
- Balanced communication and computation

Photonics can provide high bandwidth, low latency communication while meeting power requirements of embedded systems.

MIT Lincoln Laboratory

OPTICS

- Use optical network as an efficient global crossbar
- Better scaling with N groups
- Expected performance 40-80 Tb/sec

System Level View

-Photonic Many-core Architecture Network: PhotoMAN-

Selecting a system level architecture allows the parameter space to be narrowed while meeting requirements of DoD applications.

- Manycore processor chip
 - 64-256 cores (in 22nm node)
- Off-chip memory
 - a set of DRAM chips
 - minimum capacity 128 GB (at 22nm)
- Evaluate interaction of the photonic network and memory hierarchy
- Board power limit 500 W
 - Consistent with power constraints of medium-sized UAV

To evaluate the architecture develop

- 1. Expressive logical abstraction
- 2. Modeling and mapping framework

Outline

- Introduction
- Logical Architecture Abstraction
- Modeling and Mapping
- Experiments and Results
- Summary

Logical Abstraction

-Kuck* Memory Hierarchy-

The Kuck notation provides a clear way of describing a hardware architecture along with the memory and communication hierarchy

MIT Lincoln Laboratory

*High Performance Computing: Challenges for Future Systems, David Kuck, 1996

PhotoMAN Logical Representation

-MIT/UCB 1 Group Memory Configuration-

The Kuck notation is suitable for both high-level and detailed physical descriptions of the architecture, such as groups and access points.

Legend: • AP - access point • APG - access point group

PhotoMAN Logical Representation

-MIT/UCB 4 Group Memory Configuration-

Outline

- Introduction
- Logical Architecture Abstraction
- Modeling and Mapping
- Experiments and Results
- Summary

pMapper: Modeling and Mapping

PhotoMAN Machine Description

Given a hardware model *H* and a program parse tree *T*, pMapper finds maps *M* that minimize execution latency:

 $argmin_M f(T, H, M)$

Focus of the PhotoMAN study ~

	Parameter	Symbol	Unit
	Number of processing cores	N_P	N/A
	P_0^i speed	R_P	(FL)OPs/second
	P_0^i latency	L_P	second
	P_0^i efficiency on operation k	$E_{P_{i,k}}$	N/A
	M_0^i , local memory capacity of P_0^i	C_{local}	bytes
	Number of memory banks	N_{MB}	N/A
	Locations of access points (core indices)	Α	N/A
	Number of groups	N_G	N/A
	SM_1 , on-chip shared memory capacity	$C_{on-chip}$	bytes
	Size of a single data element of data type ${\cal T}$	S_T	bytes
	$N_{0.5}$, inter-core network bandwidth	$\mathbf{R}_{\mathbf{N}}$	bytes/second
	$N_{0.5}$, inter-core network latency	$\mathbf{L}_{\mathbf{N}}$	second
	SMN_1 , on-chip memory network bandwidth	$\mathbf{R}_{\mathrm{M_{on}}}$	bytes/second
	SMN_1 , on-chip memory network latency	${ m L}_{ m M_{on}}$	second
	Access point to on-chip memory bandwidth	$\mathbf{R}_{\mathrm{A}_{\mathrm{Mon}}}$	bytes/second
	Access point to on-chip memory latency	${ m L}_{ m A_{Mon}}$	second
	Access point to crossbar bandwidth	$\mathbf{R}_{A_{XS_{on}}}$	bytes/second
	Access point to crossbar latency	$L_{A_{XSon}}$	second
-	Crossbar to on-chip memory bandwidth	$R_{XS_{M_{on}}}$	bytes/second
	Crossbar to on-chip memory latency	$L_{XS_{Mon}}$	bytes/second
	SM_2 , off-chip shared memory capacity	$C_{off-chip}$	bytes
	SMN_2 , off-chip memory network bandwidth	$\mathbf{R}_{\mathrm{M_{off}}}$	bytes/second
	SMN_2 , off-chip memory network latency	$L_{M_{off}}$	second

MIT Lincoln Laboratory

Memory Hierarchy Formulation

-MIT/UCB 1 Group Memory Configuration-

- Bandwidth and latency matrices have the same pattern of non-zeros
- Topology for $N_{0.5}$ and SMN_1 is the same for the 1-Group configuration
- Diagonal entries encode
 - R_N bandwidth to local store
 - R_{Mon} whether Pⁱ is an access point

CORE-T	⁻ O-CC	RE N	IETV	/ORI	K, N ₀	.5			
		P^0	P^1	P^2	P^3		P^{16}	 P^{255}	
	P^0	$r_{M_0^0}$	$r_{N_{0.5}}$	0	0		$r_{N_{0.5}}$	 0	1
	P^1	$r_{N_{0.5}}$	$r_{M_0^1}$	$r_{N_{0.5}}$	0		0	 0	
	P^2	0	$r_{N_{0.5}}$	$r_{M_{0}^{2}}$	$r_{N_{0.5}}$		0	 0	
B _N =	P^3	0	0	$r_{N_{0.5}}$	$r_{M_{0}^{3}}$		0	 0	
IUN -								 	
	P^{10}	$r_{N_{0.5}}$	0	0	0		$r_{M_{0}^{16}}$	 0	
	 D255							 	
	P^{200}	0	0	0	0			 $r_{M_{0}^{255}}$.	

SHARED MEMORY NETWORK, SMN₁

		P^0	P^1	P^2	P^3	 P^{16}	 P^{112}	P^{113}		P^{255}
	P^0	0	r_{SMN_1}	0	0	 r_{SMN_1}	 0	0		0
	P^1	r_{SMN_1}	0	r_{SMN_1}	0	 0	 0	0		0
	P^2	0	r_{SMN_1}	0	r_{SMN_1}	 0	 0	0		0
	P^3	0	0	r_{SMN_1}	0	 0	 0	0		0
$\mathbf{R}_{\mathbf{M}_{\mathrm{on}}} =$	P^{16}	r_{SMN_1}	0	0	0	 0	 0	0		0
	P^{112}	0	0	0	0	 0	 1^{112}	r_{SMN_1}		0
	P^{113}	0	0	0	0	 0	 r_{SMN_1}	1^{113}		0
						 	 \			
	P^{255}	0	0	0	0	 0	 کھے	0		0
AP-to-SN	N	-					\sim	\supset		
$\mathbf{R}_{\mathbf{A}_{\mathrm{M}}}$	on =	$r_{A_{M_o}}$	$_{n}*I_{I}$]		-	ACCE POIN	ESS ITS	\$	

MIT Lincoln Laboratory

Memory Hierarchy Formulation

-MIT/UCB N_G Group Memory Configuration-

- Core-to-core network not shown and is the same as in 1 group case
- While memory access requires one additional transfer, the topology is represented with a single matrix R_{AXSon}

SHA	RE) MEI	MOR	RY N	ЕТИ	0	RK,	SI	NN ₁				
$\mathbf{R}_{\mathrm{M}_{\mathrm{on}}}$ =	$egin{array}{ccc} P^0 & P^1 & & & \ P^2 & P^3 & & & \ P^{16} & & & \ P^{48} & & & \ P^{64} & & & \ P^{255} & & \ P^{255} & & \ \end{array}$	$\left[\begin{array}{c} P^{0} \\ 0 \\ r_{SMN_{1}} \\ 0 \\ 0 \\ \\ r_{SMN_{1}} \\ \\ 0 \\ \\ 0 \\ \\ 0 \\ 0 \\ \end{array} \right]$	$P^1 \ r_{SMN_1} \ 0 \ r_{SMN_1} \ 0 \ \dots \ 0 \ \ 0 \ \dots \ \ 0 \ \ \ \$	P^2 0 r_{SMN_1} 0 r_{SMN_1} 0 0 0 0 0 0 0	P^3 0 r_{SMN_1} 0 0 0 0 0		P^{16} r_{SMN_1} 0 0 0 0 0 0		P^{48} 0 0 0 1 ⁴⁸ r_{SMN_1} r_{SMN_1}		P^{64} 0 0 0 r_{SMN_1} r^{64} r_{SMN_1}	 	P ²⁵⁵ 0 0 0 0 0 0 0
AP-X	(S-N	APG APG APG APG XSG	PRY ⁽⁰ ⁽¹ ⁽² ⁽³⁾ ⁽⁰⁾	NET 0 0 0 0 0	WO ⁰ Ai	RK 0 0 0 0 0	(1 A	PC 0 0 0 0	Q ² A	AP(0 0 0 0	G ³	XS r_{A_X} r_{A_X} r_{A_X}	GO Son Son Son Son Mon
					AF	AP-XS BANDWIDTH						*	
)

Outline

- Introduction
- Logical Architecture Abstraction
- Modeling and Mapping
- Experiments and Results
- Summary

Maps

High programmability is a desirable architecture characteristic

- Complexity of mapping chosen to optimize performance (minimize execution time) provides insight into programmability of hardware
 - The higher complexity of the mapping, the lower programmability

Synthetic Aperture Radar (SAR)

SAR processing chain is common to many defense application and requires significant amount of both computation and communication.

NTBliss 9/29/2008

Airborne Video Surveillance

Georegistration is a key computational kernel in airborne video surveillance and other image processing algorithms.

PhotoMAN Performance

HPEC2008 19 NTBliss 9/29/2008

PhotoMAN Programmability

See J. Kepner and N. Bliss, "Evaluating the Productivity of a Multicore Architecture"

Best Performing Architecture

- 16 groupsOptical to memoryOptical mesh
- •256 cores

Current/future research

- Network topology
- Power optimization
- Processor characteristics
- Cache architecture
- Hierarchical mapping

- Emerging device trends are motivating the need for logical architecture abstractions and robust modeling, mapping and simulation environments
- PhotoMAN study focus: photonic networks
- Kuck diagrams provide an expressive logical abstraction
- Detailed hardware model describes the mapping and modeling optimization space explored by pMapper and allows for architecture evaluation
- Initial results show over an order of magnitude improvement in *application* performance with photonics, while maintaining scalability