
999999-1
XYZ 12/13/2007

MIT Lincoln Laboratory

PVTOL:
A High-Level Signal Processing
Library for Multicore Processors
Hahn Kim, Nadya Bliss, Ryan Haney, Jeremy Kepner,
Matthew Marzilli, Sanjeev Mohindra, Sharon Sacco,

Glenn Schrader, Edward Rutledge

HPEC 2007

20 September 2007

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendataions are those of the author and are not necessarily endorsed by the United States Government.

Presenter
Presentation Notes
Title slide

MIT Lincoln Laboratory
999999-2

XYZ 12/13/2007

Outline

• Background
– Motivation
– Multicore Processors
– Programming Challenges

• Parallel Vector Tile Optimizing Library

• Results

• Summary

Presenter
Presentation Notes
Outline slide

MIT Lincoln Laboratory
999999-3

XYZ 12/13/2007

Future DoD Sensor Missions

SIGINT
& ELINT

Space-
Based
Radar

Unmanned Ground
Vehicles

Manpack
Submarine

Advanced
Destroyer

Carrier
Group

Mobile Command
& Control Aircraft

DoD missions must exploit
• High resolution sensors
• Integrated multi-modal data
• Short reaction times
• Many net-centric users

Presenter
Presentation Notes
Future DoD missions will heavily rely on a multitude of high resolution sensors on a number of different platforms. Missions will have short reaction times, requiring low latencies. Additionally, sensors are becoming increasingly networked, thus data collected by each sensor will have multiple users. The combination of high resolutions, low latencies and net-centricity requirements imposes high computational requirements on these sensors.

MIT Lincoln Laboratory
999999-4

XYZ 12/13/2007

1990 2000 2010

10

100

1000

10000

Year

M
FL

O
PS

 /
W

at
t

i860 XR

MPC7447A

Cell

MPC7410

MPC7400

603e

750

SHARC

High Performance Embedded Processors

Embedded Processor Evolution

• 20 years of exponential growth in FLOPS / Watt
• Requires switching architectures every ~5 years
• Cell processor is current high performance architecture

• Asymmetric
multicore processor

• 1 PowerPC core
8 SIMD cores

i860
SHARC
PowerPC
PowerPC with AltiVec
Cell (estimated)

Presenter
Presentation Notes
Growth in embedded processor performance, in terms of FLOPS/Watt, has grown exponentially over the last 20 years. No single processing architecture has dominated over this period, hence in order to leverage this increase in performance, embedded system designers must switch processing architectures approximately every 5 years. IBM’s Cell Broadband Engine is the current high performance architecture.

MFLOPS / W for i860, SHARC, 603e, 750, 7400, and 7410 are extrapolated from board wattage. They also include other hardware energy use such as memory, memory controllers, etc. 7447A and the Cell estimate are for the chip only. Effective FLOPS for all processors are based on 1024 FFT timings. Cell estimate uses hand coded TDFIR timings for effective FLOPS.

MIT Lincoln Laboratory
999999-5

XYZ 12/13/2007

Multicore Programming Challenge

• Great success of Moore’s Law era
– Simple model: load, op, store
– Many transistors devoted to

delivering this model
• Moore’s Law is ending

– Need transistors for performance

Past Programming Model:
Von Neumann

Future Programming Model:
???

Increased performance at the cost of exposing complexity to the programmer

• Processor topology includes:
– Registers, cache, local memory,

remote memory, disk
• Multicore processors have multiple

programming models

Presenter
Presentation Notes
For decades, Moore’s Law has enabled ever faster processors that have supported the traditional von Neumann programming model, i.e. load data from memory, process, then save the results to memory. As clock speeds near 4 GHz, physical limitations in transistor size are leading designers to build more processor cores (or “tiles”) on each chip rather than faster processors. Multicore processors improve raw performance but expose the underlying processor and memory topologies. This results in increased programming complexity, i.e. the loss of the von Neumann programming model.

MIT Lincoln Laboratory
999999-6

XYZ 12/13/2007

Example: Time-Domain FIR

for (i = K; i > 0; i--) {

/* Set accumulators and pointers for dot
* product for output point */
r1 = Rin;
r2 = Iin;
o1 = Rout;
o2 = Iout;

/* Calculate contributions from a single
* kernel point */
for (j = 0; j < N; j++) {

*o1 += *k1 * *r1 - *k2 * *r2;
*o2 += *k2 * *r1 + *k1 * *r2;

r1++; r2++; o1++; o2++;
}

/* Update input pointers */
k1++; k2++;
Rout++;
Iout++;

}

/* Load reference data and shift */
ir0 = *Rin++;
ii0 = *Iin++;
ir1 = (vector float) spu_shuffle(irOld, ir0, shift1);
ii1 = (vector float) spu_shuffle(iiOld, ii0, shift1);

Rtemp = spu_madd(kr0, ir0, Rtemp); Itemp = spu_madd(kr0, ii0, Itemp);
Rtemp = spu_nmsub(ki0, ii0, Rtemp); Itemp = spu_madd(ki0, ir0, Itemp);

ANSI C Cell Manager C (Communication)

• ANSI C is easy to
understand

• Cell increases complexity:
– Communication requires

synchronization
– Computation requires

SIMD

/* Fill input vector and filter buffers and send to workers*/
mcf_m_tile_channel_get_buffer(..., &vector_in, ...);
mcf_m_tile_channel_get_buffer(..., &filter, ...);
init_buffer(&vector_in);
init_buffer(&filter);
mcf_m_tile_channel_put_buffer(..., &vector_in, ...);
mcf_m_tile_channel_put_buffer(..., &filter, ...);

/* Wait for worker to process and get a full output vector buffer */
mcf_m_tile_channel_get_buffer(..., &vector_out, ...);

while (mcf_w_tile_channel_is_not_end_of_channel(...)) {
/* Get buffers */
mcf_w_tile_channel_get_buffer(..., &vector_in, ...);
mcf_w_tile_channel_get_buffer(..., &filter, ...);
mcf_w_tile_channel_get_buffer(..., &vector_out ...);

/* Perform the filter operation */
filter_vect(vector_in, filter, vector_out);

/* Send results back to manager */
mcf_w_tile_channel_put_buffer(..., &vector_out, ...);

/* Put back input vector and filter buffers */
mcf_w_tile_channel_put_buffer(..., &filter, ...);
mcf_w_tile_channel_put_buffer(..., &vector_in, ...);

}

Cell Worker C (Communication)

Cell Worker C (Computation)

Presenter
Presentation Notes
The ANSI C code is oriented towards solving a problem. The major optimization techniques on the part of the programmer are accessing memory well, writing good C code, and selecting compiler switches. Most C implementations have little sensitivity to the underlying hardware.

With C extensions, the user has limited visibility of the hardware. Here the SIMD register are used. Using SIMD registers requires the use of the “shuffle” instructions for the convolution. Adding these SIMD extensions to increase performance also increases the complexity of the code.

MIT Lincoln Laboratory
999999-7

XYZ 12/13/2007

Example: Time-Domain FIR
Performance vs. Effort

C SIMD
C

Hand
Coding

Parallel
(8 SPE)

Lines of Code 33 110 371 546

Performance
Efficiency
(1 SPE)

0.014 0.27 0.88 0.82

GFLOPS
(2.4 GHz)

0.27 5.2 17 126

PVTOL Goal: Achieve high performance with little effort

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

C

Hand Coding

Parallel

SIMD C

103

102

101

100

Sp
ee

du
p

fr
om

 C

SLOC / C SLOC

Software Lines of Code (SLOC) and
Performance for TDFIR

S. Sacco, et al. “Exploring the Cell with HPEC Challenge Benchmarks.” HPEC 2006.

PVTOL Goal

Presenter
Presentation Notes
Time is intended as units of time, not actual time. The actual time will depend on the skills of the programmer. Here the implementation is simple since it is not required to cover all possible cases. The usual estimate for implementing the first full convolution in an algorithms group is 1 - 2 weeks for most processors. This estimate includes design, coding and debug time.

Performance efficiency is used here rather than time since it can be applied to any Cell. The measurement of the TDFIR code here was made entirely on an SPE without communicating with the outside memory. The decrementer was measured just before the code and immediately afterwards. This should be scalable to any frequency.

The parallel numbers for 8 SPEs do not include lines of code or coding effort measurements. The performance efficiency includes data transfers. The other performance efficiencies were measured for the computational code only.

MIT Lincoln Laboratory
999999-8

XYZ 12/13/2007

Outline

• Background

• Parallel Vector Tile Optimizing Library
– Map-Based Programming
– PVTOL Architecture

• Results

• Summary

Presenter
Presentation Notes
Outline slide

MIT Lincoln Laboratory
999999-9

XYZ 12/13/2007

Proc
1

Cluster

Proc
0

grid: 1x2
dist: block
procs: 0:1

Map

Technology Organization Language Year

Parallel
Vector Library

MIT-LL C++ 2000

pMatlab MIT-LL MATLAB 2003

VSIPL++ HPEC-SI C++ 2006

Map-Based Programming

• A map is an assignment of
blocks of data to processing
elements

• Maps have been demonstrated
in several technologies

Grid specification together
with processor list describe
where the data is distributed

Distribution specification
describes how the data is
distributed

Presenter
Presentation Notes
Map-based programming is method for simplifying the task of assigning data across processors. Map-based programming has been demonstrated in several technologies, both at Lincoln and outside Lincoln. This slide shows an example illustrating how maps are use to distribute matrices.

MIT Lincoln Laboratory
999999-10

XYZ 12/13/2007

New Challenges

• Hierarchy
– Extend maps to support the

entire storage hierarchy

Instr. Operands

Blocks

Pages

Messages

Tiles

MULTFFTFFTA B C D E

Registers

Cache

Local Memory

Remote Memory

Disk

• Heterogeneity
– Different architectures

between processors

– Different architectures
within a processor

• Automated Mapping
– Allow maps to be constructed using automated techniques

IntelAMD

Synergistic
Processing
Elements

PowerPC
Processing

Element

Presenter
Presentation Notes
Several new challenges to map-based programming have emerged. Multicore architectures expose the storage hierarchy to the programmer. Processing platforms are increasingly being composed of heterogeneous processing architectures, both within the processor and across processors. Automated mapping techniques are desireable to automatically construct maps for the user. Maps must be extended in order to support all of these new challenges.

MIT Lincoln Laboratory
999999-11

XYZ 12/13/2007

PVTOL Goals

• PVTOL is a portable and scalable middleware library for
multicore processors

• Enables incremental development

Cluster

2. Parallelize code

Embedded
Computer

3. Deploy code

Make parallel programming as easy as serial programming

1. Develop serial code

Desktop

4. Automatically parallelize code

Presenter
Presentation Notes
PVTOL is focused on addressing the programming complexity of associated with emerging “Topological Processors”. Topological Processors require the programmer to understand the physical topology of the chip to get high efficiency. There are many such processors emerging into the market. The Cell processor is an important example of such a chip. The current PVTOL effort is focused on getting high performance from the Cell processor on signal and image processing applications. The PVTOL interface is designed to address a wide range of processors including multicore and FPGAs.

PVTOL enables software developers to develop high-performance signal processing application on a desktop computer, parallelize the code on commodity clusters, then deploy the code onto an embedded computer, with minimal changes to the code. PVTOL also includes automated mapping technology that will automatically parallelize the application for a given platform. Applications developed on a workstation can then be deployed on an embedded computer and the library will parallelize the application without any changes to the code.

MIT Lincoln Laboratory
999999-12

XYZ 12/13/2007

PVTOL Architecture

PVTOL preserves the
simple load-store

programming model in
softwareProductivity: Minimizes effort at user level

Performance: Achieves high performance

Portability: Runs on a range of architectures

Presenter
Presentation Notes
This slide shows a layered view of the PVTOL architecture. At the top is the application. The PVTOL API exposes high-level structures for data (e.g. vectors), data distribution (e.g. maps), communication (e.g. conduits) and computation (e.g. tasks and computational kernels). High level structures improve the productivity of the programmer. By being built on top of existing technologies, optimized for different platforms, PVTOL provides high performance. And by supporting a range of processor architectures, PVTOL applications are portable. The end result is that rather than learning new programming models for new processor technologies, PVTOL preserves the simple von Neumann programming model most programmers are used to.

MIT Lincoln Laboratory
999999-13

XYZ 12/13/2007

PVTOL API

Data structures encapsulate
data allocated across the
storage hierarchy into objects

Maps describe how to assign
blocks of data across the

storage hierarchy

Tasks encapsulate computation.
Conduits pass data between
tasks

Kernel objects/functions
encapsulate common operations.

Kernels operate on PVTOL data
structures

Presenter
Presentation Notes
The PVTOL API is composed of high-level objects that abstract the complexity of programming multicore processors.

MIT Lincoln Laboratory
999999-14

XYZ 12/13/2007

#procs Tp (s)

MULTFFTFFT 94001 A B C D E

MULTFFTFFT 91742 A B C D E

MULTFFTFFT4
2351A B C D E

1176
MULTFFTFFT8 A B C D E

MULTFFTFFT11 937A B C D E

Automated Mapping

• Simulate the architecture using pMapper simulator infrastructure
• Use pMapper to automate mapping and predict performance

N. Bliss, et al. “Automatic Mapping of the HPEC Challenge Benchmarks.” HPEC 2006.

Presenter
Presentation Notes
PVTOL’s automated mapping capability is built on pMapper technology. pMapper can both simulate the expected performance of the target architecture and automate the construction of maps for an application running on the target architecture.

MIT Lincoln Laboratory
999999-15

XYZ 12/13/2007

LS

…

LS

SPE 1

LS

SPE 2

CELL
1

LS

…

LS LS

SPE 0 SPE 3

LS

SPE 1

LS

SPE 2

CELL
Cluster

CELL
0

LS LS

SPE 0 SPE 3

grid: 1x2
dist: block
nodes: 0:1
map: cellMap

grid: 1x4
dist: block
policy: default
nodes: 0:3
map: speMap

grid: 4x1
dist: block
policy: default

Hierarchical Arrays

clusterMap

cellMap

speMap

H. Kim, et al. “Advanced Hardware and Software Technologies for Ultra-long FFT’s.” HPEC 2005.

• eXtreme Virtual Memory provides hierarchical arrays and maps
– Hierarchical arrays hide details of the processor and memory hierarchy
– Hierarchical maps concisely describe data distribution at each level

Presenter
Presentation Notes
Maps describe how to partition an array. There are two types of maps: spatial and temporal. A spatial map describes how elements of an array are divided between multiple processors. A physical spatial map breaks up an array into blocks that are physically located on separate processors, e.g. dividing an array between two Cell processors. A logical map differs from a physical map in that the array being partitioned remains intact. Rather, the arrays is logically divided into blocks that are owned by different processors. For example, on a single Cell processor, the array resides in main memory. A logical map may assign blocks of rows to each SPE. Finally, temporal maps divided arrays into blocks that are loaded into memory one at a time. For example, a logicial map may divide an array owned by a single SPE into blocks of rows. The array resides in main memory and the SPE loads one block at a time into its local store.

MIT Lincoln Laboratory
999999-16

XYZ 12/13/2007

Computational Kernels &
Processor Interface

• Intel IPP

• Mercury Multicore Framework (MCF) • IBM Cell API

• Mercury Scientific
Algorithm Library (SAL)

Performance (1.5x)

Po
rta

bi
lit

y
(3

x)

Productivity (3x)

HPEC
Software
Initiative

Demonstrate

Develop

Pr
ot

ot
yp

e

Object Oriented

Op
en

 S
ta

nd
ar

ds

Interoperable & Scalable

POSIX-like threads

VSIPL++VSIPL

• Vector Signal and Image
Processing Library

FFT
Convolution

Presenter
Presentation Notes
PVTOL uses existing technologies to provide optimized computational kernels and interfaces to target processing architectures. For example, Mercury has a version of their Scientific Algorithm Library that contains optimized signal processing kernels for the Cell. Intel’s Integrated Performance Primitives provides optimized kernels for Intel architectures. VSIPL++ is a signal processing standard supported on a range of architectures. Mercury Multicore Framework provides a programming interface to the Cell processor that is built on IBM’s Cell API and interoperates with SAL.

MIT Lincoln Laboratory
999999-17

XYZ 12/13/2007

Outline

• Background

• Parallel Vector Tile Optimizing Library

• Results
– Projective Transform
– Example Code
– Results

• Summary

Presenter
Presentation Notes
Outline slide

MIT Lincoln Laboratory
999999-18

XYZ 12/13/2007

Projective Transform

• Projective transform is a homogeneous warp transform
– Each pixel in destination image is mapped to a pixel in the source image

• Example of a real life application with a complex data distribution

S. Sacco, et al. “Projective Transform on Cell: A Case Study.” HPEC 2007.

• Many DoD optical applications
use mobile cameras

• Consecutive frames may be
skewed relative to each other

• Standardizing the perspective
allows feature extraction

Presenter
Presentation Notes
Projective transform is a useful kernel for many DoD optical sensor applications. It provides a useful example of a computational kernel required by real life applications that has a complex data distribution whose implementation can be simplified by using PVTOL.

MIT Lincoln Laboratory
999999-19

XYZ 12/13/2007

Projective Transform
Data Distribution

• Mapping between source
and destination pixels is
data dependent

– Can not use regular data
distributions for both
source and destination

Extent box

1. Break destination image
into blocks

1.

2.

3.

4. 4.
5.

2. Map destination block to
source image

3. Compute extent box of
source block

4. Transfer source and
destination blocks to SPE
local store

5. SPE applies transform to
source and destination
blocks

Presenter
Presentation Notes
This slide shows the process of distributing an image to be processed by the projective transform.

MIT Lincoln Laboratory
999999-20

XYZ 12/13/2007

Projective Transform Code
Serial

typedef Dense<2, short int, tuple<0, 1> > DenseBlk;
typedef Dense<2, float, tuple<0, 1> > DenseCoeffBlk;
typedef Matrix<short int, DenseBlk, LocalMap> SrcImage16;
typedef Matrix<short int, DenseBlk, LocalMap> DstImage16;
typedef Matrix<float, DenseCoeffBlk, LocalMap> Coeffs;

int main(int argc, char** argv) {
Pvtol pvtol(argc, argv);

// Allocate 16-bit images and warp coefficients
SrcImage16 src(Nrows, Ncols);
DstImage16 dst(Nrows, Ncols);
Coeffs coeffs(3, 3);

// Load source image and initialize warp coefficients
loadSourceImage(&src);
initWarpCoeffs(&coeffs);

// Perform projective transform
projective_transform(&src, &dst, &coeffs);

}

Presenter
Presentation Notes
This slide shows serial PVTOL code for the projective transform.

MIT Lincoln Laboratory
999999-21

XYZ 12/13/2007

Projective Transform Code
Parallel

typedef RuntimeMap<DataDist<BlockDist, BlockDist> > RuntimeMap;
typedef Dense<2, short int, tuple<0, 1> > DenseBlk;
typedef Dense<2, float, tuple<0, 1> > DenseCoeffBlk;
typedef Matrix<short int, DenseBlk, LocalMap> SrcImage16;
typedef Matrix<short int, DenseBlk, RuntimeMap> DstImage16;
typedef Matrix<float, DenseCoeffBlk, LocalMap> Coeffs;

int main(int argc, char** argv) {
Pvtol pvtol(argc, argv);

Grid dstGrid(1, 1, Grid::ARRAY); // Allocate on 1 Cell
ProcList pList(pvtol.processorSet());
RuntimeMap dstMap(dstGrid, pList);

// Allocate 16-bit images and warp coefficients
SrcImage16 src(Nrows, Ncols);
DstImage16 dst(Nrows, Ncols, dstMap);
Coeffs coeffs(3, 3);

// Load source image and initialize warp coefficients
loadSourceImage(&src);
initWarpCoeffs(&coeffs);

// Perform projective transform
projective_transform(&src, &dst, &coeffs);

}

Presenter
Presentation Notes
This slide shows parallel PVTOL code for the projective transform. Code required to make the serial code parallel is shown in red.

MIT Lincoln Laboratory
999999-22

XYZ 12/13/2007

Projective Transform Code
Embedded

typedef RuntimeMap<DataDist<BlockDist, BlockDist> > RuntimeMap;
typedef Dense<2, short int, tuple<0, 1> > DenseBlk;
typedef Dense<2, float, tuple<0, 1> > DenseCoeffBlk;
typedef Matrix<short int, DenseBlk, LocalMap> SrcImage16;
typedef Matrix<short int, DenseBlk, RuntimeMap> DstImage16;
typedef Matrix<float, DenseCoeffBlk, LocalMap> Coeffs;

int main(int argc, char** argv) {
Pvtol pvtol(argc, argv);

// Hierarchical map for the destination image
Grid dstTileGrid(PT_BLOCKSIZE, PT_BLOCKSIZE, Grid::ELEMENT); // Break into blocks
DataMgmtPolicy tileDataPolicy;
RuntimeMap dstTileMap(dstTileGrid, tileDataPolicy);

Grid dstSPEGrid(1, pvtol.numTileProcessor(), Grid::ARRAY); // Distribute across SPE’s
ProcList speProcList(pvtol.tileProcessorSet());
RuntimeMap dstSPEMap(dstSPEGrid, speProcList, dstTileMap);

Grid dstGrid(1, 1, Grid::ARRAY); // Allocate on 1 Cell
ProcList pList(pvtol.processorSet());
RuntimeMap dstMap(dstGrid, pList, dstSPEMap);

// Allocate 16-bit images and warp coefficients
SrcImage16 src(Nrows, Ncols);
DstImage16 dst(Nrows, Ncols, dstMap);
Coeffs coeffs(3, 3);

// Load source image and initialize warp coefficients
loadSourceImage(&src);
initWarpCoeffs(&coeffs);

// Perform projective transform
projective_transform(&src, &dst, &coeffs);

}

Presenter
Presentation Notes
This slide shows the hierarchical PVTOL code for the projective transform for an embedded Cell platform. Code required to make the parallel code hierarchical is shown in red.

MIT Lincoln Laboratory
999999-23

XYZ 12/13/2007

Projective Transform Code
Automapped

typedef Dense<2, short int, tuple<0, 1> > DenseBlk;
typedef Dense<2, float, tuple<0, 1> > DenseCoeffBlk;
typedef Matrix<short int, DenseBlk, LocalMap> SrcImage16;
typedef Matrix<short int, DenseBlk, AutoMap> DstImage16;
typedef Matrix<float, DenseCoeffBlk, LocalMap> Coeffs;

int main(int argc, char** argv) {
Pvtol pvtol(argc, argv);

// Allocate 16-bit images and warp coefficients
SrcImage16 src(Nrows, Ncols);
DstImage16 dst(Nrows, Ncols);
Coeffs coeffs(3, 3);

// Load source image and initialize warp coefficients
loadSourceImage(&src);
initWarpCoeffs(&coeffs);

// Perform projective transform
projective_transform(&src, &dst, &coeffs);

}

Presenter
Presentation Notes
This slide shows the automapped PVTOL code for the projective transform. Code required to make the serial code automapped is shown in red.

MIT Lincoln Laboratory
999999-24

XYZ 12/13/2007

Results
Performance

PVTOL adds minimal overhead

GOPS vs. Megapixels

G
O

PS

Image size (Megapixels)

20.14

19.04

0.95

Presenter
Presentation Notes
This slide shows the performance of three implementations of the projective transform. The Baseline C code is an ANSI C implementation. The Mercury MCF code directly implements the projective transform with MCF. The PVTOL code wraps the MCF implementation using prototype PVTOL constructs. The PVTOL prototype adds some overhead to the MCF version, but as data sizes increase the overhead becomes negligable. For small data sizes, the Baseline C version outperforms both PVTOL and MCF. This is due to inherent overhead of the MCF library. But as data sizes increase, PVTOL and MCF outperform C.

MIT Lincoln Laboratory
999999-25

XYZ 12/13/2007

Results
Performance vs. Effort

GOPS* SLOCs

ANSI C 0.95 52

MCF 20.14 736

PVTOL 19.04 46

PVTOL acheives high performance with effort
comparable to ANSI C

* 10 Megapixel image, 3.2 GHz Intel Xeon (ANSI C), 3.2 GHz Cell w/ 8 SPEs (MCF and PVTOL)

Presenter
Presentation Notes
This slide compares the performance of various implementations of the projective transform against the number of software lines of code required for each. Note that SLOCs are broken into two columns. The first denotes the number of SLOCs the user must write. In the case of ANSI C, the user must actually implement the projective transform but in the case of MCF and PVTOL, an optimized SPE kernel would be provided. The second column includes the SLOCs required to implement the SPE kernel. The ANSI SLOCs remain the same because it only runs on the PPE. The results show that PVTOL code is comparable to the number of lines required in ANSI C, keeping in mind that the computation code becomes the responsibility of the PVTOL library.

MIT Lincoln Laboratory
999999-26

XYZ 12/13/2007

Outline

• Background

• Parallel Vector Tile Optimizing Library

• Results

• Summary

Presenter
Presentation Notes
Outline slide

MIT Lincoln Laboratory
999999-27

XYZ 12/13/2007

Future of Multicore Processors

• AMD vs. Intel
– Different flavors of multicore
– Replication vs. hierarchy

• “Many-core” processors
– In 2006, Intel achieved 1 TeraFLOP on

an 80-core processor

• Heterogeneity
– Multiple types of cores & architectures
– Different threads running on different

architectures

AMD Phenom Intel Core 2 Extreme

Intel Polaris

PVTOL will extend to support future multicore designs

Broadcom BMC1480 GPU’s

Presenter
Presentation Notes
Multicore processing architectures is still a young field and the future will introduce even more programming challenges. Both AMD and Intel are introducing quad-core processors, but using different approached. AMD’s processor replicates a single core four times while Intel replicate two dual-core processors. Hierarchical arrays will allows programmers to distribute data in a flat manner across AMD architectures or in a hierarchical manner across Intel’s architectures. “Many-core” describes future multicore architectures that contain a large number of cores (>>16). The challenge becomes how to allocate applications to such a large number of cores. Finally, both multicore and many-core processors will increasingly encounter heterogeneity, both in having different processing architectures in the same chip and different threads of an application running on different cores. PVTOL’s programming constructs will enable programmers to easily program to these future multicore architectures.

MIT Lincoln Laboratory
999999-28

XYZ 12/13/2007

Summary

• Emerging DoD intelligence missions will collect more data
– Real-time performance requires significant amount of

processing power

• Processor vendors are moving to multicore architectures
– Extremely difficult to program

• PVTOL provides a simple means to program multicore
processors

– Have demonstrated for a real-life application

Presenter
Presentation Notes
Summary slide

	PVTOL:�A High-Level Signal Processing Library for Multicore Processors
	Outline
	Future DoD Sensor Missions
	Embedded Processor Evolution
	Multicore Programming Challenge
	Example: Time-Domain FIR
	Example: Time-Domain FIR�Performance vs. Effort
	Outline
	Map-Based Programming
	New Challenges
	PVTOL Goals
	PVTOL Architecture
	PVTOL API
	Automated Mapping
	Hierarchical Arrays
	Computational Kernels &�Processor Interface
	Outline
	Projective Transform
	Projective Transform�Data Distribution
	Projective Transform Code�Serial
	Projective Transform Code�Parallel
	Projective Transform Code� Embedded
	Projective Transform Code�Automapped
	Results�Performance
	Results� Performance vs. Effort
	Outline
	Future of Multicore Processors
	Summary

