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1 Introduction 
For decades, Moore’s Law has enabled ever faster 
processors that have supported the traditional von 
Neumann programming model, i.e. load data from 
memory, process, then save the results to memory. As 
clock speeds near 4 GHz, physical limitations in transistor 
size are leading designers to build more processor cores (or 
“tiles”) on each chip rather than faster processors. 
Multicore processors improve raw performance but expose 
the underlying processor and memory topologies. This 
results in increased programming complexity, i.e. the loss 
of the von Neumann programming model. 

Consider IBM’s Cell Broadband Engine. The Cell 
architecture consists of 9 cores: 1 PowerPC Processing 
Element (PPE) and 8 Synergistic Processing Elements 
(SPE), the Cell’s processing engines. The Cell architecture 
acheives very high levels of performance. IBM’s Cell API 
is very low level, however, and has a steep learning curve 
[1]. Applications launch on the PPE, which spawns threads 
onto the SPE’s. The PPE loads data into main memory, 
and then each SPE transfers data from main memory into 
its local memory via DMA’s. 

The Cell is just one of many emerging multicore 
architectures, each with its own programming model. The 
MIT Lincoln Laboratory is developing the Parallel Vector 
Tile-Optimized Library (PVTOL) which provides a 
uniform means of writing high-performance signal 
processing code that is portable across a range of 
traditional and multicore architectures [2]. PVTOL also 
increases productivity by providing a set of high-level 
programming constructs. 
 
2 Parallel Vector Tile-Optimized Library 
PVTOL’s architecture consists of several layers, shown in 
Figure 1. At the user interface level, PVTOL provides an 
object-oriented C++ API. Internally, PVTOL is built on 
existing technologies optimized for various platforms. This 
architecture results in a middleware library that maintains 
high productivity, high performance and portability. 
 
2.1 Productivity 
PVTOL’s API provides high-level constructs for data 
(vectors, matrices and tensors), data distribution (maps), 
communication (conduits) and computation (tasks and 
kernels). These constructs increase productivity by 
supporting a partitioned global address space (PGAS) 
programming model, which overlays a shared, global 
address space on a physically partitioned address space. 

Maps were introduced in Lincoln’s Parallel Vector 
Library (PVL) and later adopted by the VSIPL++ standard. 
Maps concisely describe how to allocate parallel arrays 
across multiple processors. PVTOL has hierarchical maps 
that describe how to allocate hierarchical arrays across the 
processor hierarchy [3]. For example, a hierarchical map 
for the Cell may consist of two maps. One map distributes 
an array between multiple Cell processors, similar to PVL 
and VSIPL++. The other map distributes each processor’s 
data across its SPE’s. Figure 2 shows sample PVTOL code 
that allocates hierarchical matrices to be processed by a 
frequency-domain FIR filter kernel. Details have been 
omitted for the sake of brevity. 

 

 
 

Figure 1: PVTOL Architecture 
 
// Distribute across cores 
Grid grid2(...); 
DataDist dist2(...); 
Vector<int> procs2(...); 
ProcList procList2(procs2); 
RuntimeMap map2(grid2, dist2, procList2); 
 
// Distribute across processors 
Grid grid(...); 
DataDist dist(...); 
Vector <int> procs(...); 
ProcList procList(procs); 
RuntimeMap map(grid, dist, procList, map2); 
 
// Create input, weights, and output matrix 
typedef Dense<2, float, tuple<0, 1> > blk_t; 
typedef Matrix<float, blk_t, RuntimeMap> mat_t; 
mat_t input(num_vects, len_vect, map), 
      filts(num_vects, len_vect, map), 
      output(num_vects, len_vect, map); 
 
// Initialize matrices 
... 
 
// FDFIR filter 
output = fdfir(input, filts);  



Figure 2: PVTOL code for a frequency-domain FIR filter 
Nominally, programmers explicitly construct maps to 

parallelize arrays. Alternatively, programmers can use 
PVTOL’s automated mapping capability, a first among 
signal processing middleware libraries [4]. PVTOL allows 
programmers to tag arrays for automatic mapping; based 
on the computation, data flow and processing architecture, 
PVTOL determines the optimal mapping. 

 
2.2 Performance 
Optimized libraries for communication and computation 
are available for most processor architectures. For 
example, Intel’s Integrated Performance Primitives (IPP) is 
an optimized computation library for Intel processors; 
Mercury Computer Systems’ MultiCore Framework 
(MCF) and a version of their Scientific Algorithm Library 
(SAL) are optimized communication and computation 
libraries, respectively, for their Cell-based systems. 

PVTOL is able to use vendor optimized libraries. 
Where possible, PVTOL also uses standard vendor-neutral 
libraries that support a range of architectures. Using 
industry standards such as VSIPL++ expands PVTOL’s 
portability. 
 
2.3 Portability 
By building on a range of programming technologies, 
PVTOL provides two degrees of portability. First, 
PVTOL’s support for both traditional and multicore 
architectures allows programmers to incrementally 
development applications. Programmers first develop on 
desktop workstations. Once serial correctness is verified, 
the application is parallelized on a cluster by adding maps. 
Finally, parallelized applications can be deployed onto 
multicore processors by adding hierarchical maps. 

Second, PVTOL applications can be easily ported to 
new multicore architectures, allowing developers to easily 
take advantage of technology refresh cycles. 
 
3 Results 
We have built a prototype of PVTOL and implemented 
several computational kernels: a time-domain FIR filter 
bank (TDFIR), a frequency-domain FIR filter bank 
(FDFIR) and an image projective transform (PT). TDFIR 
and FDFIR are part of the HPEC Challenge Benchmark 
Suite [5]; PT was developed for a project at Lincoln. 

Figure 3 compares performance and productivity of 
four implementations of the FDFIR kernel using IPP, 
Sourcery VSIPL++ (using IPP) [6], MCF/SAL, and 
PVTOL. The IPP and VSIPL++ implementations were run 
on a 3.2 GHz Intel Xeon processor and the MCF/SAL and 
PVTOL implementations were run on an 3.2 GHz IBM 
Cell processor using all 8 SPE’s. 

The X-axis shows productivity and the Y-axis shows 
performance in GFLOPS. The IPP code acheives 4.48 
GFLOPS but suffers from low productivity due to larger 
code size. The version of VSIPL++ we used is built on IPP 
and, hence, acheives 4 GFLOPS or about 90% of IPP 
performance. VSIPL++’s productivity is much higher due 
to a significant reduction in code size. 

 
Figure 3: HPEC Challenge FDFIR benchmark 

 
The Mercury code shows a dramatic increase in 

performance of the Cell over the Xeon, acheiving 111.84 
GFLOPS. Acheiving this performance, however, requires 
significantly more code than the IPP code. The PVTOL 
version is built on top of the MCF/SAL kernel, acheiving 
111.59 GFLOPS with a higher level of productivity than 
VSIPL++. 
 
4 Summary 
By hiding the complexity of multicore architectures, 
PVTOL’s PGAS model preserves the simple von 
Neumann model familiar to most programmers, improving 
programmer productivity. Building on technologies 
optimized for a variety of architectures allows PVTOL to 
achieve high performance and portability. 

We are continuing to implement PVTOL 
programming constructs for the Intel and Cell architectures 
and include support for more computational kernels. As 
the Cell implementation of PVTOL matures, we will 
investigate supporting other promising multicore 
architectures. 
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