Projective Transform on Cell: A Case Study

Sharon Sacco, Hahn Kim, Sanjeev Mohindra, Peter Boettcher, Chris Bowen, Nadya Bliss, Glenn Schrader and Jeremy Kepner

HPEC 2007
19 September 2007

Outline

- Overview
- Why Projective Transform?
- Projective Transform
- Cell Features
- Approach
- Coding Tour
- Results
- Summary

Why Projective Transform?

- Aerial surveillance is increasingly important to DoD
- Video / Image understanding needs image processing
- Projective transform is a key image processing kernel

Projective Transform

- Projective Transform is a specialized Warp Transform
- Performs zoom, rotate, translate, and keystone warping
- Straight lines are preserved
- Projective Transform registers images from airborne cameras
- Position of the camera determines the coefficients of the warp matrix

Cell Features

Outline

- Overview
- Approach
- Preliminary Analysis
- Parallel Approach
- Coding Tour
- Cell System
- Mercury MCF
- Results
- Summary

Preliminary Analysis

point/pixel (x, y) index pair can \bar{b} è fractional, require interpolation
point/pixel (j,i) index pair, where i is the row index, is integer

Interpolation

$$
V(j, i)=(1-y) *\left((1-x) * p_{00}+x^{*} p_{01}\right)+y^{*}\left((1-x)^{*} p_{10}+x^{*} p_{11}\right)
$$

Op count to compute 1 pixel value: 35
Complexity: O(n)

Parallel Approach

- The output image is partitioned into tiles
- Each tile is mapped onto the input image
- Tiles in the output image are partitioned onto SPEs
- Tiles are distributed "round robin"

Parallel Approach

- For each tile an extent box is calculated for loading into the local store
- Extent box cannot extend outside of source image
- Sizes of extent boxes vary within images as well as between images
- Irregular overlaps between adjacent boxes prevent reuse of data

Mercury Cell Processor Test System

Mercury Cell Processor System

- Single Dual Cell Blade
- Native tool chain
- Two 3.2 GHz Cells running in SMP mode
- Terra Soft Yellow Dog Linux 2.6.17
- Received 03/21/06
- Booted \& running same day
- Integrated/w LL network < 1 wk
- Octave (Matlab clone) running
- Parallel VSIPL++ compiled
- Upgraded to 3.2 GHz December, 2006
- Each Cell has 205 GFLOPS (single precision)
- 410 for system @ 3.2 GHz (maximum)

Software includes:

- IBM Software Development Kit (SDK)
- Includes example programs
- Mercury Software Tools
- MultiCore Framework (MCF)
- Scientific Algorithms Library (SAL)
- Trace Analysis Tool and Library (TATL)

Mercury MCF

- MultiCore Frameworks (MCF) manages multi-SPE programming
- Function offload engine model
- Stripmining
- Intraprocessor communications
- Overlays
- Profiling
- Tile Channels expect regular tiles accessed in prescribed ordered
- Tile channels are good for many common memory access patterns
- Irregular memory access requires explicit DMA transfers

- Leveraging vendor libraries reduces development time
- Provides optimization
- Less debugging of application

Outline

- Overview
- Approach
- Coding Tour
- Manager Communication Code
- Worker Communication Code
- Results
- SPE Computational Code
- Summary

PPE Manager Communications

- Manager responsibilities
- Allocate SPEs
- Manage higher level memory
- Notify SPEs data is ready
- Wait for SPEs to release data
- Initiate clean up
- MCF Tile channel programs are data driven

- Manager communicates with SPEs via EIB

SPE Worker Communications

- SPE Communication Code
- Allocates local memory
- Initiates data transfers to and from XDR memory
- Waits for transfers to complete
- Calls computational code
- SPE communications code manages strip mining of XDR memory

while (mcf_w_tile_channel_is_not_end_of_frame(h_channel_dst)) \{
I/ Get a destination image block
rc = mcf_w_tile_channel_get_buffer(h_channel_dst, \&buf_desc_dst,
MCF_RESERVED_FLAG, NULL);
II If this is the first tile to be processed, then fill the DMA queue
II Wait for the right dma to complete
rc = mcf_w_dma_wait(dma_tag,MCF_WAIT);
II Call projective transform kernel
if (ispartial[dma_tag])
\{ II Process a partial block
ptInterpolateBlockPart(
(unsigned short*) alloc_desc_src[dma_tag]->pp_buffer[0],
(unsigned short*) buf_desc_dst->pp_buffer[0],
eb_src[dma_tag].x0, eb_src[dma_tag].y0,
\&eb_dst[dma_tag], coeffs, src_sizeX-1, src_sizeY-1);
\}
else
\{ II Process a whole block ptinterpolateBlock(
(unsigned short*) (alloc_desc_src[dma_tag]->pp_buffer[0]), (unsigned short int*) buf_desc_dst->pp_buffer[0], eb_src[dma_tag].x0, eb_src[dma_tag].y0, \&eb_dst[dma_tag], coeffs);
... II load next extent box contents and other operations
rc = mcf_w_tile_channel_put_buffer(h_channel_dst,
\&buf_desc_dst, MCF_RESERVED_FLAG, NULL);

An excerpt from worker code
MIT Lincoln Laboratory

Outline

- Overview
- Approach
- Coding Tour
- Results
- Summary
- Manager Communication Code
- Worker Communication Code
- SPE Computational Code

Reference C

- C is a good start for code design

- Speed not important

Find precise position in image

Find upper left pixel and offsets

Estimate pixel value using bi-linear interpolation

```
    t1 = fl * coeffs[2][1] + coeffs[2][2];
    t2 = fl * coeffs[0][1] + coeffs[0][2];
    t3 = fl * coeffs[1][1] + coeffs[1][2];
    for (j= min_j, fJ = (float)min_j; j <= max_j; j++,
        fJ += 1.0){
    II Find position in source image
    df}=\overline{1}.0-\mp@subsup{0}{}{-
    xf = (fJ * coeffs[0][0] + t2) * df;
    yf = (fJ * coeffs[1][0] + t3) * df;
```

 II Find base pixel address and offsets
 \(\bar{x}^{-}=(\mathrm{in} \overline{\mathrm{t}})^{-} \overline{\mathrm{x}} ;\)
 \(y=\) (int) \(y f ;\)
 dx = (int)(256.0 * (xf - x));
 dy \(=(\) int \()(256.0\) * (yf - y));
 I/ Pick up surrounding pixels, bilinear interpolation

rd = *s * $256-d x)+$ * $(s+1)$ * dx;
s += BLOCKSIZE $\ll 1$;
$\mathrm{yr}=$ *s * $(256-\mathrm{dx})+$ *($\mathrm{s}+1$) * dx ;
rd = rd * (256-dy) + yr * dy;
*ptrRunning = rd >> 16; I/ Write to des. image
ptrRunning++;

Computational Code for Row in Whole Tile in ANSI C

C with SIMD Extensions

- SIMD C is more complicated than ANSI C

- Does not follow same order

- SPE only sees local store memory

sptr = (unsigned short *)spu_extract(y2,0);
s1 = *sptr;

$$
\begin{gathered}
\text { yr = spu_add(spu_mulo((vector unsigned short)LL, } \\
\text { (vector unsigned short)xdiff), } \\
\text { spu_mulo((vector unsigned short)LR, } \\
\text { (vector unsigned short)dx1)); } \\
\text { s2 = *(sptr + 1); } \\
\text { s3 = *(sptr + si_to_int((qword)twoBlocksize)); } \\
\text { rd1 = spu_add(} \\
\text { spu_add(} \\
\text { spu_add(} \\
\text { spu_mulo((vector unsigned short)rd1, } \\
\text { (vector unsigned short)ydiff), } \\
\text { (vector unsigned int)spu_mulh(} \\
\text { (vector signed short)rd1, } \\
\text { (vector signed short)ydiff)), } \\
\text { spu_add((vector unsigned int)spu_mulh(} \\
\text { (vector signed short)ydiff, } \\
\text { (vector signed short)rd1), } \\
\text { spu_mulo((vector unsigned short)yr, } \\
\text { (vector unsigned short)dy1))), } \\
\text { spu_add((vector unsigned int)spu_mulh(} \\
\text { (vector signed short)yr, } \\
\text { (vector signed short)dy1), }
\end{gathered}
$$

Bi-linear Interpolation from ANSI C Version

(vector unsigned int)spu_mulh((vector signed short)dy1, (vector signed short)yr)));

Rounding and Division

```
df = 1.0 l (fJ * coeffs[2][0] + t1);
xf = (fJ * coeffs[0][0] + t2) * df;
yf = (fJ * coeffs[1][0] + t3) * df;
x = (int) xf; I/ Note that next step is "float to fix"
y = (int) yf;
```

ANSI C Implementation

- Division takes extra steps
- Data range and size may allow shortcuts
- Expect compiler dependent results
IIdf = vector float(1.0) / (fJ * vector float(*(coeffs + 6)) + T1);

```
yf = spu_madd(fJ, spu_splats(*(coeffs + 6)), T1);
df = spu_re(yf); Il y1 ~ (1 I x), 12 bit accuracy
yf = spu_nmsub(yf, df, f1); /l t1 = -(x * y1 - 1.0)
df = spu_madd(yf, df, df);
    l/ y2 = t1 * y1 + y1, done with
    I/ Newton Raphson
xf = spu_madd(fJ, spu_splats(*coeffs), T2);
yf = spu_madd(fJ, spu_splats(*(coeffs + 3)), T3);
xf = spu_mul(xf, df);
yf = spu_mul(yf, df);
II nudge values up to compensate for truncation
xf = (vector float)spu_add((vector unsigned int) xf, 1);
yf = (vector float)spu_add((vector unsigned int) yf, 1);
```

SIMD C Implementation with Minimal Correction

- Truncation forces some changes in special algorithms for accuracy

Outline

- Overview
- Approach
- Coding Tour
- Results
- SLOCs and Coding Performance
- Compiler Performance
- Covering Data Transfers
- Summary

SLOCs and Coding Performance

	SLOCS	GOPS (10 M pix)
ANSI C (PPE)	52	0.126
ANSI C (SPE)	97	0.629
SIMD C	512	4.20
Parallel SIMD	1248	27.41

- Clear tradeoff between performance and effort
- C code simple, poor performance
- SIMD C, more complex to code, reasonable performance

Compiler Performance

- GOPS (giga operations per second) based on 40 operations / pixel
- 1 SPE used
- Compiler switches vary, but basic level of optimization is the same (-O2)
- Performance will vary by image size (10 M pixel image used)
- XLC only used on SPE code

	ANSI C	SIMD C
GCC / G++ (v. 4.1.1) (GOPS)	0.182	3.68
XLC (v. 8.01) (GOPS)	0.629	4.20
XLC / GCC	3.46	1.14

- XLC outperforms GCC / G++ on SPEs
- Significant improvement for serial ANSI C code
- Some improvement with SIMD code

Covering Data Transfers

- 8 SPEs are used
- About 2 msec overhead
- Computation dominates
- Assembly code would be the next optimization if needed
- Communications are partially covered by computations
- Timing for projective transform scales with image size

Summary

- Good Cell programming takes work
- Compiler choice can noticeably affect performance, particularly if ANSI C is used
- SIMD CIC++ extensions perform much better than ANSI C/C++, but at the price of code complexity
- Middleware such as Mercury's MCF makes coding easier
- Rounding mode on SPEs presents challenges to users
- Better middleware will make programming easier for users
- There needs to be a level of programming where the user does not have to become a Cell expert

Backup

The Plan

OP Count Assumptions:
Transform: 3 mults +3 adds $=6$ OPs
Total op count: $6+12+8=\mathbf{2 6}$ OPs/pixel
Total operation count requirement/second:

- 26 OPs/pixel * 11,000,000 pixels/frame * 4 frames =
$1,144,000,000$ OPS $=1.144$ gigaOPS
1 SPE processing capability:
- 25.6 GFLOPS

Time complexity calculation assumptions:

- Each pixel is 16 bits or 2 bytes
- 1 SPE
- Sub-image size conducive to double-buffering
- Double buffering is not used
(Assume that operations on 2 byte integers cost the same as operations on single precision, 4 byte, floating point numbers)

Local Store (LS) $=256$ KB
Assume 80KB dedicated to MCF and other code

- 256-80 = 176 KB for data

Allow another 20\% space for incidentals

- 176 KB * $0.8=140.8$ KB for data
- 140.8 KB * 1024 = 144,180 bytes

Number of pixel that fit into LS

- 144,180 bytes / (2 bytes/pixel) $=\mathbf{7 2 , 0 9 0}$ pixels

Need to store both source and destination sub-image (For 1 unit of destination space, need 4 units of source)

- 72,090 pixels $/(1+4)=14,418$ pixels of destination can be computed on a single SPE
Setup for double buffering
- 14,418/2 ~= 7,000 pixels can be computed in LS

To compute each pixel, need to transfer in source (4*7000 pixels*2 bytes/pixel) and transfer out the destination (7000 pixels*2 bytes/pixel)
To compute 7,000 pixels in the destination, have to transfer (5*7000*2) $=70,000$ bytes
Time complexity of data transfer (ignore latency) at 25.6 GB/s 70,000 bytes $/ 25.6 * 10^{9}$ bytes $/ \mathrm{sec}=2.73 * 10^{-6} \mathrm{sec}$
Time complexity of computation at 25.6 GFLOPS

- (7,000 pixels * 26 OP/pixel)/25.6*10 ${ }^{9}$ FLOPS $=7.11 * 10^{-6}$

Number of 7000 pixel blocks in 11MPixel image
$11,000,000 / 7,000=1572$
Time complexity of computing 4 frames

- 4 frames * 1572 blocks * $\left(2.73^{*} 10^{-6}+7.11 * 10^{-6}\right)=0.0620 \mathrm{sec}$

