
TX-2500
AIR - Slide-1

MIT Lincoln Laboratory

TX-2500
An Interactive, On-Demand

Rapid-Prototyping HPC System
Albert Reuther, William Arcand, Tim Currie, Andrew Funk,

Jeremy Kepner, Matthew Hubbell, Andrew McCabe, and Peter Michaleas

HPEC 2007
September 18-20, 2007

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Presenter
Presentation Notes
Title slide. A number of sponsors have made this system possible.

TX-2500
AIR - Slide-2

MIT Lincoln Laboratory

•

Motivation
•

HPEC Software Design Workflow

Outline

• Introduction

• Interactive, On-Demand

• High Performance

• Summary

Presenter
Presentation Notes
Outline Slide

TX-2500
AIR - Slide-3

MIT Lincoln Laboratory

LLGrid Applications

Presenter
Presentation Notes
With over 200 users, there are a wide variety of applications that have used the LLGrid for running algorithms and simulations. On the next slide, we’ll discuss more about a project that has used LLGrid to develop next-generation radar technologies. The team is depicted in the center of this slide.

TX-2500
AIR - Slide-4

MIT Lincoln Laboratory

Example App: Prototype GMTI & SAR Signal Processing

Analyst Workstation
Running Matlab

Streaming
Sensor

Data

SAR
GMTI
…
(new)RAID Disk

Recorder

A/D
180 MHz

BW

Subband
Filter Bank

Delay &
Equalize

Real-time front-end processing

416

Non-real-time GMTI processing
Doppler
Process

STAP
(Clutter)

Target
Detection

Subband
Combine

3

Adaptive
Beamform

Pulse
Compress

430 GOPS 190 50 100320

Research
Sensor

On-board
processing

• Airborne research sensor data collected
• Research analysts develop signal processing algorithms in

MATLAB® using collected sensor data
• Individual runs can last hours or days on single workstation

Presenter
Presentation Notes
MIT Lincoln Laboratory is an FFRDC which specializes in sensor signal processing for the DoD. As such, much of the work involves the signal processing and analysis of sonar and radar systems. Naturally, this involves extrordinary amounts of computation capability.
Let’s start by talking about an example application for which the development workflow is rather similar across much of what researchers at MIT Lincoln Laboratory do every day.
In this example, an airborne research sensor takes streaming sensor data, conducts some real-time, front end signal processing, and records it to a RAID disk array.
Once the mission completes, the data is received by research analysts who use MATLAB to study the phenomenology of the data and develop algorithms to process and analyze it.
In developing and running these analyses, each simulation run on such data can take hours or days. The analysts could run their algorithms on smaller “toy” data sets, but they won’t know whether their algorithms are effective until they run it on the actual data. If they had the resources to run MATLAB in parallel on a grid computing system, they could be more effective in developing their signal processing algorithms.
The analysts running these simulations are used to running in MATLAB, which is a very on-demand, interactive environment. The expect to be able to interact with their simulations by changing parameters, getting graphic and textual results, etc.

TX-2500
AIR - Slide-5

MIT Lincoln Laboratory

Algorithm Development

HPEC Software Design Workflow

Cluster

Parallel code

Embedded
Computer

Embedded codeDevelop serial code

Desktop

Verification
Parallel code Embedded code

Data Analysis
Parallel code Embedded code

Requirements
• Low barrier-to-entry
• Interactive
• Immediate

execution
• High performance

Requirements
• Low barrier-to-entry
• Interactive
• Immediate

execution
• High performance

Presenter
Presentation Notes
This slide depicts a common development cycle for HPEC software: first, serial code is developed from which the parallel code is derived. From the parallel code, the embedded code is developed, and is verified against the parallel code. Finally, data is analyzed using both the embedded and parallel codes. To enable this workflow, the environment for developing and using the parallel code, the cluster system requires a low-barrier-to-entry, interactivity, immediate (on-demand) execution, and high performance. These requirements set up the outline for the rest of the talk.

TX-2500
AIR - Slide-6

MIT Lincoln Laboratory

•

Technology
•

Results

Outline

• Introduction

• Interactive, On-Demand

• High Performance

• Summary

Presenter
Presentation Notes
Outline Slide

TX-2500
AIR - Slide-7

MIT Lincoln Laboratory

Library Layer (pMatlab)Library Layer (pMatlab)

Parallel Matlab (pMatlab)

Vector/MatrixVector/Matrix CompComp TaskConduit

Application

Parallel
Library

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

Kernel LayerKernel Layer

Math
(MATLAB)

Messaging
(MatlabMPI)

Layered Architecture for parallel computing
• Kernel layer does single-node math & parallel messaging
• Library layer provides a parallel data and computation toolbox to Matlab

users

Cluster Launch
(gridMatlab)

Presenter
Presentation Notes
pMatlab is the library layer. The user calls pMatlab functions, which provide mechanisms for automatically distributing and parallelizing Matlab code.
MatlabMPI is the communication kernel. pMatlab calls MatlabMPI functions to communicate data between processors.
gridMatlab enables the users to launch jobs onto a cluster through the Matlab environment interface.

TX-2500
AIR - Slide-8

MIT Lincoln Laboratory

Batch vs. Interactive, On-Demand
Scheduling Tradeoffs

• What is the goal of the system?
– Capability computing
– Capacity computing

• What types of algorithms and code will system run?
– Stable algorithms
– Algorithm development

• What’s more expensive?
– The system and it’s maintenance
– The researchers’ time

Interactive, On-
Demand Scheduling

Batch Queue(s)

Capacity computing,
algorithm development,
and/or high researcher cost

Capability computing,
stable algorithms and/or
high system cost

Presenter
Presentation Notes
Historically, the cost of HPC systems have so outweighed the cost of the researchers using the system, there was only one choice as to how to schedule HPC resources: a batch queue.
But with the invasion of cluster computing and other relatively low-cost avenues to HPC capabilities, there are now more choices; a batch queue is no longer the only horse in town. It is now much more feasible and defendable to operate a compute cluster in an interactive, on-demand scheduling manner. Furthermore, there are even hybrid choices to be made for systems that incorporate both on-demand and batch scheduling so that a variety of jobs can be accommodated.
Deciding between batch and interactive, on-demand scheduling requires some design tradeoffs:
Is the goal of the system to enable new, never-before-possible applications (capability computing), or is it going to be used to executing already-running applications faster (capacity computing)?
 What types of algorithm/applications will be executing on the system? Are they mostly stable algorithms or are the algorithms still in development?
 Finally, one must ask: what is more expensive, the system and its maintenance or the researcher’s time?
At Lincoln, we have chosen an interactive, on-demand system to enable rapid prototype development.

TX-2500
AIR - Slide-9

MIT Lincoln Laboratory

Interactive,
On-Demand

Queue

Interactive,
On-Demand

Queue

Batch
(Default)
Queue

Batch
(Default)
Queue

Medium
Priority

Medium
Priority

Low
Priority

Low
Priority

High
Priority
High

Priority

Limit: 64 CPUs
per user (more
upon request)

Limit: 96/128
(days/nights,
weekends) CPUs
per user (more
upon request)

LLGrid User Queues

• Not using scheduler’s interactive features (lsrun, lsgrun, bsub -I)
• Certain CPUs for interactive, on-demand jobs only
• CPU allotments will change when upgrading to larger system

Interactive Only Interactive and Batch

Presenter
Presentation Notes
So what do we do on LLGrid?
Well, early on we ran LLGrid exclusively as an interactive, on-demand computing resource. This worked well for the most part, until we chose to accommodate batch-style jobs. After being swamped by several very large batch-style jobs, we chose to implement a hybrid scheduling policy. This policy enables two queues, one for interactive, on-demand jobs and a second for batch jobs. The interactive, on-demand queue has a higher priority on jobs slots (CPUs) than the batch queue. However, the interactive, on-demand queue has lower per-user CPU limit: only 64 CPUs per job (more upon request) versus the 96 or 128 (day/night) CPU limit on the batch queue. Within the batch queue, there are three priorities for jobs, the default of which is medium priority. Users can choose to designate their jobs as low priority, while they need to get approval to designate their jobs as high priority.
In terms of how queues use the CPUs in the system, the interactive, on-demand queue is allowed to send jobs to any of the CPUs in the cluster, while the batch queue can only submit jobs to a fairly large subset of all of the CPUs. That means that there are some CPUs that are reserved for interactive, on-demand jobs.
It should be added that the interactive, on-demand queue does not use any LSF scheduler interactive features like lsrun, lsgrun, or bsub -I. It uses the same bsub as the batch queue, and the gridMatlab toolbox enforces the processor limits and on-demand characteristics of that scheduling policy.

TX-2500
AIR - Slide-10

MIT Lincoln Laboratory

LLGrid Usage
December 2003 – August 2007

LLGrid Usage

>8 CPU hours - Infeasible on
Desktop

>8 CPUs - Requires On-
Demand Parallel
Computing

Processors used by Job

1 10 100 1000

Jo
b

du
ra

tio
n

(s
ec

on
ds

)

1

10
0

10

00
0

 1

M Statistics
• 280 + 864 CPUs
• 226 Users
• 234,658 Jobs
• 130,160 CPU Days

Jobs Legend:
alphaGrid
betaGrid
TX-2500

Jobs Legend:
alphaGrid
betaGrid
TX-2500

Presenter
Presentation Notes
The graph on the left shows each of the 101,000 jobs plotted on a log-log graph. The x-axis shows the number of processors used, while the y-axis shows the duration of the job. The blue shaded region shows the jobs enabled by LLGrid - these are jobs that run more than a 8 CPU hours and/or run on more than 8 CPUs.
The red box are jobs that run on more than 8 CPUs but run in less than 5 minutes - these jobs require on-demand parallel computing because batch-based system do not accommodate such jobs. Yet they could take an hour or more to run on a desktop system.
The green rhombus in the top portion of the graph are jobs that run over 8 CPU hours - these jobs are infeasible on desktop computers.
Most of the jobs in the lower lefthand corner are debugging execution runs to prepare for the longer execution runs.

TX-2500
AIR - Slide-11

MIT Lincoln Laboratory

Usage Statistics
December-03 – August-07

• Most jobs use less than 32
CPUs

• Many jobs with 2, 8, 24, 30,
32, 64, and 100 CPUs

• Very low median job duration
• Modest mean job duration
• Some jobs still take hours on

16 or 32 CPUs

Total jobs run 234,658
Median CPUs per job 11
Mean CPUs per job 20
Maximum CPUs per job 856
Total CPU time 130,160d 15h
Median job duration 35s
Mean job duration 40m 41s
Max job duration 18d 7h 6m1 16 32 48 64 84 96 112 128 144

Processors Used by Jobs

0

N
um

be
r o

f J
ob

s

1000

2000

3000

4000

5000

1 10 100 1000 104 105 106

Duration of Jobs (seconds)

0

N
um

be
r o

f J
ob

s

1000

2000

3000

4000

5000

6000

7000

Presenter
Presentation Notes
The data contained on the previous chart can also be viewed as histograms along each axis. The figure in the top left is a histogram of the number of processors used in each job. As one can see, most of the jobs are run on 32 processors or fewer; the current maximum number of processors that are to be used for a conventional job on the LLGrid system is 32 processors. The figure in the bottom left is a histogram that plots the number of jobs versus the duration of jobs in seconds; it shows that most jobs executed in less than 2000 seconds (around 30 minutes).
The table provides a number of interesting statistics from the usage of the LLGrid system from December 2003 to May 2007 that further substantiates our findings. First, the median number of CPUs used for a single job was 11, while the mean number of CPUs used for a single job was 20. More interesting, though, is the median and mean job execution time: the median job duration is just 45 seconds, while the mean job duration is 52 minutes. So users are usually running jobs that would execute for over eight hours are typically executing on 32 or fewer processors in less than 60 minutes. This suggests that some users are executing debugging runs in preparation for longer parallel execution runs, while others are running simulations in parallel that complete in less than an hour, which would have taken hours on a desktop computer.
This hypothesis has been substantiated with interviews of our user base. We have found that the users are rapidly prototyping algorithms and executing them on large datasets in a parallel fashion with very timely feedback. The on-demand execution coupled with interactive parallel computing enables them to tighten their research and development loops (or turns) helping them work more efficiently and effectively.
Note to self: the top graph was produced with Matlab script stat_graphs.m while the bottom graph was generated with Matlab script get_stats.m.

TX-2500
AIR - Slide-12

MIT Lincoln Laboratory

Individuals’ Usage Examples

• Developing non-linear
equalization ASIC

• Post-run processing from
overnight run

• Debug runs during day
• Prepare for long overnight

runs

• Simulating laser propagation
through atmosphere

• Simulation results direct
subsequent algorithm
development and parameters

• Many engineering iterations
during course of day

18:00 19:00 20:00 21:00
Tuesday, 15-May-2007

0

Pr
oc

es
so

rs
 U

se
d

by
 J

ob
s

10

20

30

40

50

60

70

20:00 21:00 22:00 23:00 0:00
Saturday, 5-May-2007

0

Pr
oc

es
so

rs
 U

se
d

by
 J

ob
s

10

20

30

40

50

60

70

Presenter
Presentation Notes
An example individual usage is an LLGrid users who is developing an application specific integrated circuit (ASIC) for non-linear equalization of digital signals. The figure on the left is a usage plot of this researcher’s activity on Tuesday, May. 15, 2007. It plots the time of the day on the x-axis versus the number of processors that this individual was using in an interactive, on-demand fashion. Being able to debug algorithms and validate results in an interactive, on-demand fashion facilitates more rapid time to results both with few and a full set of processors, and it enables this scientist to run a set of long simulations every night rather than every two or three nights.
The figure on the right is a plot of the usage of an optics engineer. It charts his usage of the LLGrid system on Friday, May 5, 2007. It shows the many parameter runs and algorithm adjustments that he is able to do in the course of a day. He needed to rapidly write, evaluate, and revise his algorithms, which were written in MATLAB. Running his algorithms on his simulation data sets on a desktop workstation typically executed for hours. The results of each simulation direct the parameter and algorithm development choices for subsequent simulations, and he usually could only execute a few of these simulations in a 24-hour period. After parallelizing his simulations, he now runs the simulations on his desktop machines with 24 to 64 LLGrid processors coming alongside his desktop computer to complete the computations. These simulations now complete in a few minutes, affording him between many more engineering turns per day.
These examples typify the value of the interactive, on-demand capabilities of the LLGrid system in enabling MIT Lincoln Laboratory engineers and scientists to work more effectively and efficiently.

TX-2500
AIR - Slide-13

MIT Lincoln Laboratory

•

Technology
•

Results

Outline

• Introduction

• Interactive, On-Demand

• High Performance

• Summary

Presenter
Presentation Notes
Outline Slide

TX-2500
AIR - Slide-14

MIT Lincoln Laboratory

TX-2500

Shared
network
storage

Rocks Mgmt, 411,
Web Server,

Ganglia

Service Nodes

Dual 3.2 GHz EM64-T Xeon
(Irwindale CPUs on Lindenhurst
Chipset)
8 GB RAM memory
Two Gig-E Intel interfaces
InfiniBand interface
Six 300-GB disk drives

PowerEdge 2850
432

• 432+3 Nodes
• 864+6 CPUs
• 3.4 TB RAM
• 0.78 PB of Disk
• 28 Racks

LSF-HPC
resource
manager/
scheduler

To LLAN

Presenter
Presentation Notes
The unclassified HPCMO Granted Grid Hardware consists of 432 nodes with a number of service nodes including a network file server, an LSF resource manager, login nodes, and management nodes for Rocks 411, and Ganglia. This amounts to a total of 864 processors and 3.4 TB of RAM. Each node consists of a 3.2 GHz dual Xeon, 8 GB of RAM, six 300 GB hard drives RAIDed together, two Ethernet interfaces, and an InfiniBand interface. All of the nodes run Linux. The gridsan serves its files with both NFS and SaMBa, which is mounted on the user’s computer as well as all of the LLGrid nodes. There is an internal and an external network to help avoid network contention. Each node has several versions of MATLAB installed on its local hard drive. All of the computation nodes receive their OS and application installations via DHCP and Red Hat KickStart technology using Rocks; the nodes can be reimaged within an hour. Also each node has a local installation and license for MATLAB so that they do not have to execute it across the network.

TX-2500
AIR - Slide-15

MIT Lincoln Laboratory

InfiniBand Topology

Four Cisco SFS 7008P
Core Switches (96
InfiniBand 10-Gbps 4X
ports each)

28 Cisco SFS 7000P
Rack Switches
(24 InfiniBand 10-
Gbps 4X ports each)

28 Racks
16 Servers Each

• Two uplinks from each rack switch to each core switch
• Provides redundancy and minimizes contention

Presenter
Presentation Notes
The InfiniBand network is a two-tiered topology which provides a very flat and deterministic low-latency, high-bandwidth network fabric. Each node in a rack is connected to it’s local rack InfiniBand switch. Each rack Infiniband switch is then connected twice to each of the four core switches. This provides tremendous redundancy in the network and minimizes network contention both at the rack switches and the core switches.

TX-2500
AIR - Slide-16

MIT Lincoln Laboratory

Parallel Computing Architecture Issues

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Standard Parallel
Computer Architecture

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Network Switch

Corresponding
Memory Hierarchy

Performance
Implications

In
cr

ea
si

ng
 B

an
dw

id
th

In
cr

ea
si

ng
 L

at
en

cy

In
cr

ea
si

ng
 C

ap
ac

ity

In
cr

ea
si

ng
 P

ro
gr

am
m

ab
ili

ty

• Standard architecture produces a “steep” multi-layered memory hierarchy
– Programmer must manage this hierarchy to get good performance

• Need to measure each level to determine system performance

• Standard architecture produces a “steep” multi-layered memory hierarchy
– Programmer must manage this hierarchy to get good performance

• Need to measure each level to determine system performance

Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

Presenter
Presentation Notes
Standard parallel computer architecture results in a steep memory hierarchy. Please note the performance implications for each of these hierarchy layers on the right,

TX-2500
AIR - Slide-17

MIT Lincoln Laboratory

Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

• HPC Challenge with Iozone measures this hierarchy
• Benchmarks performance of architecture
• HPC Challenge with Iozone measures this hierarchy
• Benchmarks performance of architecture

HPC Challenge Benchmarks

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

•Top500: solves a system
Ax = b

•STREAM: vector operations
A = B + s x C

•FFT: 1D Fast Fourier Transform
Z = FFT(X)

•RandomAccess: random updates
T(i) = XOR(T(i), r)

• Iozone: Read and write to disk
(Not part of HPC Challenge)

bandwidth

latency

Presenter
Presentation Notes
HPC Challenge benchmarks target each level of the memory hierarchy.

TX-2500
AIR - Slide-18

MIT Lincoln Laboratory

Target
ID

Change
Detection

SAR
Images

Raw SAR
Data

Image
Formation

Adaptive
Beamforming

Example SAR Application

• Pulse compression
• Polar Interpolation
• FFT, IFFT (corner turn)

• Large images
difference &
threshold

Front-End
Sensor Processing

Back-End
Detection and ID

• Solve linear systems

• Many small
correlations on
random pieces
of large imageTop500

FFT STREAM

Random
Access

• HPC Challenge benchmarks are similar to pieces of real apps
• Real applications are an average of many different operations
• How do we correlate HPC Challenge with application performance?

• HPC Challenge benchmarks are similar to pieces of real apps
• Real applications are an average of many different operations
• How do we correlate HPC Challenge with application performance?

Presenter
Presentation Notes
SAR Image Formation, has large scale parallel two-dimensional (2D) Inverse Fast Fourier Transform (IFFT); may require a ‘corner turn’ or a ‘gather scatter’ (depending on architecture), with large quantities of data. Polar interpolation is known to be even more computationally intense than IFFT.

Streaming image data storage to an I/O device (write) may involve large block data transfers, storing one large image after another (Kernel 2)
Random location image sequence retrieval from an I/O device (read) also involving large quantities of data, with stressful memory access patterns, and locality issues (Kernel 3)

Kernel 4, detection, involves performing many small correlations on random pieces of large images.

TX-2500
AIR - Slide-19

MIT Lincoln Laboratory

Flops: Top500

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

Problem Size=4000 MB/node

• Top500 measures register-to-CPU comms (1.42 TFlops peak)
• Top500 does not stress the network subsystem

CPUs
CPUs

Problem Size
(MB/node)

G
FL

O
PS

G
FL

O
PS

Presenter
Presentation Notes
As expected, if you add more CPUs, you’ll scale up the performance. HPL does not stress the network subsystem.

TX-2500
AIR - Slide-20

MIT Lincoln Laboratory

Memory Bandwidth: STREAM

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Memory to CPU bandwidth tested (~2.7 GB/s per node)
• Unaffected by memory footprint of data set

Problem Size=4000 MB/node

CPUs
CPUs

Problem Size
(MB/node)

G
FL

O
PS

G
FL

O
PS

Presenter
Presentation Notes
STREAM challenges the memory-to-CPU bandwidth. This shows that, as expected, the performance scales linearly with the number of CPUs added to the network. There is also no impact on the network as can be seen on the left in the Ethernet to InfiniBand comparison.

TX-2500
AIR - Slide-21

MIT Lincoln Laboratory

Network Bandwidth: FFT

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Infiniband makes gains due to higher bandwidth
• Ethernet plateaus around 256 CPUs

Problem Size=4000 MB/node

CPUs
CPUs

Problem Size
(MB/node)

G
FL

O
PS

G
FL

O
PS

Presenter
Presentation Notes
Here we see the first example of a benchmark that is affected by the network; this can be seen with the graph on the left. Not only does the Ethernet curve lag the InfiniBand curve as the CPUs are scaled up, but the Ethernet curve starts to turn over indicating that the network is becoming the bottleneck to scaling up performance. This suggests that the bandwidth of Ethernet limits the scaling performance of the FFT benchmark, since FFT requires significant bandwidth to transmit the vector subsets of the 2-dimensional FFT of this benchmark.

TX-2500
AIR - Slide-22

MIT Lincoln Laboratory

Network Latency: RandomAccess

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Low latency of InfiniBand drives GUPS performance
• Strong mapping to embedded interprocessor comms

Problem Size=4000 MB/node

CPUs
CPUs

Problem Size
(MB/node)

G
FL

O
PS

G
FL

O
PS

Presenter
Presentation Notes
The RandomAccess benchmark thrives in a low-latency network because it is getting memory updates from the global memory space. The high latency of Ethernet cause performance to decrease as CPUs/nodes are added to the execution pool.

TX-2500
AIR - Slide-23

MIT Lincoln Laboratory

Iozone Results

Command used: iozone -r 64k -s 16g -e -w -f /state/partition1/iozone_run

• 98% of the RAID arrays exceeded 50 MB/s throughput
• Comparable performance to embedded storage

Write Bandwidth (MB/s)

R
ea

d
B

an
dw

id
th

 (M
B

/s
)

Presenter
Presentation Notes
This chart shows a plot of the write performance versus the read performance of the 6-disk hardware RAID5 disk subsystems on 416 nodes. Each point on this scatter plot is a single node’s read and write performance on a 16 GB data file. It is remarkable how much variation is shown in performance amongst all of the RAID systems.

TX-2500
AIR - Slide-24

MIT Lincoln Laboratory

HPC Challenge Comparison
M

eg
a

G
ig

a
Te

ra

Ef
fe

ct
iv

e
B

an
dw

id
th

(w
or

ds
/s

ec
on

d)

CPUs
1 2 4 8 16 32 64 128

384
416256

Top500

STREAM

FFT

RandomAccess

InfiniBand, Problem Size=4000 MB/node

• All results in words/second
• Highlights memory hierarchy

Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

Memory Hierarchy

bandwidth

latency

Presenter
Presentation Notes
This chart compares the scaling curves of the four major benchmarks of the HPC Challenge benchmark suite. Each of the curves is shown to relate to a different part of the memory hierarchy.

TX-2500
AIR - Slide-25

MIT Lincoln Laboratory

Summary

• Low barrier-to-entry
• Interactive
• Immediate execution
• High Performance

• Low barrier-to-entry
• Interactive
• Immediate execution
• High Performance

Parallel Matlab and User Statistics

HPC Challenge and Results

Algorithm Development
Parallel code Embedded codeDevelop serial code

Verification
Parallel code Embedded code

Data Analysis
Parallel code Embedded code

Presenter
Presentation Notes
During the course of this talk, we addressed the low barrier-to-entry, interactivity and immediate execution requirements with the parallel matlab infrastructure. We then looked at the performance of the system with the HPC Challenge benchmark suite results. In the future we intend to run the HPEC Challenge benchmark suite on the system to get a closer comparison between the cluster and embedded systems.

TX-2500
AIR - Slide-26

MIT Lincoln Laboratory

Back Up Slides

Presenter
Presentation Notes
Backup banner slide

TX-2500
AIR - Slide-27

MIT Lincoln Laboratory

TX-2500: Analysis of Potential Bottlenecks
Peak Bandwidths

GigE Central Switches
Nortel 5530 Stack
5 GB/s Back Plane

GigE Central Switches
Nortel 5530 Stack
5 GB/s Back Plane

IB Core Switch
Cisco SFS 7008P

240 GB/s Back Plane

IB Core Switch
Cisco SFS 7008P

240 GB/s Back Plane

CPU1
3.2 GHz

“Irwindale”

CPU1
3.2 GHz

“Irwindale”

North Bridge
“Lindenhurst”

MCH

North Bridge
“Lindenhurst”

MCH

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

CPU0
3.2 GHz

“Irwindale”

CPU0
3.2 GHz

“Irwindale”

South Bridge ICH5
USB, Video, etc.

South Bridge ICH5
USB, Video, etc.

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

D
D

R
2-

40
0M

H
z

2
G

B
 R

A
M

FSB-800MHz
(6.4 GB/s)

DDR2-400MHz
Ch.B (3.2 GB/s)

DDR2-400MHz
Ch.A (3.2 GB/s)

Hublink
1.5 GB/s

PCIeX X4
2.0 GB/s

PERC4e/DC
RAID Cache
PERC4e/DC
RAID Cache

D
D

R
2-

40
0M

H
z

25
6

M
B

 C
ac

he
D

D
R

2-
40

0M
H

z
25

6
M

B
 C

ac
he

PERC4e/DC
RAID Contr.
PERC4e/DC
RAID Contr.

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

PC
Ie

X
X8

4.
0

G
B

/s

PC
Ie

X
X8

4.
0

G
B

/s

Infiniband HBA
1.8GB/s

Infiniband HBA
1.8GB/s

GigE Interface
1 Gbps (0.18GB/s)

GigE Interface
1 Gbps (0.18GB/s)GigE Interface

0.18GB/s

GigE Rack Switch
Nortel 5510 Stack
5 GB/s Back Plane

GigE Rack Switch
Nortel 5510 Stack
5 GB/s Back Plane

PC
Ie

X
X8

4.
0

G
B

/s G
ig

E
0.

18
 G

B
/s

10
 G

ig
1.

8
G

B
/s

IB Rack Switch
Cisco SFS 7000P

60 GB/s Back Plane

IB Rack Switch
Cisco SFS 7000P

60 GB/s Back Plane

10
X

IB
1.

8
G

B
/s

10X IB
1.8 GB/s

U
32

0
SC

SI
32

0
M

B
/s

Dell
PowerEdge

2850

Dell Dell
PowerEdgePowerEdge

28502850

CPU0
3.2 GHz

“Irwindale”

CPU0
3.2 GHz

“Irwindale”

North Bridge
“Lindenhurst”

MCH

North Bridge
“Lindenhurst”

MCH

D
D

R
2-400M

H
z

2 G
B

 R
A

M
D

D
R

2-400M
H

z
2 G

B
 R

A
M

CPU1
3.2 GHz

“Irwindale”

CPU1
3.2 GHz

“Irwindale”

South Bridge ICH5
USB, Video, etc.

South Bridge ICH5
USB, Video, etc. D

D
R

2-400M
H

z
2 G

B
 R

A
M

D
D

R
2-400M

H
z

2 G
B

 R
A

M
D

D
R

2-400M
H

z
2 G

B
 R

A
M

D
D

R
2-400M

H
z

2 G
B

 R
A

M

FSB-800MHz
(6.4 GB/s)

DDR2-400MHz
Ch.B (3.2 GB/s)

DDR2-400MHz
Ch.A (3.2 GB/s)

Hublink
1.5 GB/s

PCIeX X4
2.0 GB/s

PERC4e/DC
RAID Cache
PERC4e/DC
RAID Cache

D
D

R
2-400M

H
z

256 M
B

 C
ache

D
D

R
2-400M

H
z

256 M
B

 C
ache

PERC4e/DC
RAID Contr.
PERC4e/DC
RAID Contr.

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

U320 SCSI
10k RPM
~40 MB/s

PC
IeX

X8
4.0 G

B
/s

PC
IeX

X8
4.0 G

B
/s

Infiniband HBA
1.8GB/s

Infiniband HBA
1.8GB/s

GigE Interface
1 Gbps (0.18GB/s)

GigE Interface
1 Gbps (0.18GB/s)GigE Interface

0.18GB/s

GigE Rack Switch
Nortel 5510 Stack
5 GB/s Back Plane

GigE Rack Switch
Nortel 5510 Stack
5 GB/s Back Plane

PC
IeX

X8
4.0 G

B
/s

G
igE

0.18 G
B

/s

10 G
ig

1.8 G
B

/s

IB Rack Switch
Cisco SFS 7000P

60 GB/s Back Plane

IB Rack Switch
Cisco SFS 7000P

60 GB/s Back Plane

10X IB
1.8 G

B
/s

10X IB

1.8 GB/s

U
320 SC

SI
320 M

B
/s

Dell
PowerEdge
2850

Dell Dell
PowerEdgePowerEdge
28502850

Presenter
Presentation Notes
This slide depicts the subsystems of two TX-2500 compute nodes and the networks that connect them. The orange boxes are the Gigabit Ethernet networks, while the red boxes depict the InfiniBand network. Notice the extremely high backplane bandwidths of the InfiniBand switches compared to the greatly oversubscribed Gigabit Ethernet switches.
The chart also depicts the bandwidths of the shared front-side bus (FSB) which is shared between the two Intel Xeon processors. The Lindenhurst chip set provides connectivity to the dual-channel DRAM memory, two Gigabit Ethernet interfaces, an InfiniBand interface, and a hardware RAID controller with 6 Ultra-320 SCSI 10k RPM disks.

TX-2500
AIR - Slide-28

MIT Lincoln Laboratory

Spatial/Temporal Locality Results

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Spatial Score

FFT

GUPS

Stream

HPL

Avus Large

cth7 Large

Gamess Large

lammps Large

overflow2

wrf

MetaSim data from Snavely et al (SDSC)

HPL (Top500)

FFT

STREAM
RandomAccess

Scientific
Applications

HPC
Challenge

Scientific
Applications

• HPC Challenge bounds real applications
– Allows us to map between applications and benchmarks

• HPC Challenge bounds real applications
– Allows us to map between applications and benchmarks

Intelligence, Surveillance, Reconnaisance
Applications

Presenter
Presentation Notes
HPC Challenge bounds the performance of real appliations.

TX-2500
AIR - Slide-29

MIT Lincoln Laboratory

HPL “Top500” Benchmark

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Petaflops (8x over current best)

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Petaflops (8x over current best)

• High Performance Linpack (HPL) solves a system Ax = b
• Core operation is a LU factorization of a large MxM matrix
• Results are reported in floating point operations per second (flops)

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

LU
Factorization

A

L

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

U

2D block cyclic distribution
is used for load balancing

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

Presenter
Presentation Notes
Top500 benchmarks measures processor performance.

TX-2500
AIR - Slide-30

MIT Lincoln Laboratory

STREAM Benchmark

• Basic operations on large vectors (requires no communication)
• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Petabytes/second (40x over current best)

• Basic operations on large vectors (requires no communication)
• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Petabytes/second (40x over current best)

• Performs scalar multiply and add
• Results are reported in bytes/second

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

A
=
B
+

s x C

Np-1...10

Np-1...10

Np-1...10

Presenter
Presentation Notes
STREAM benchmark targets main memory bandwidth.

TX-2500
AIR - Slide-31

MIT Lincoln Laboratory

FFT Benchmark

• FFT a large complex vector (requires all-to-all communication)
• Stresses interprocessor communication of large messages
• DARPA HPCS goal: 0.5 Petaflops (200x over current best)

• FFT a large complex vector (requires all-to-all communication)
• Stresses interprocessor communication of large messages
• DARPA HPCS goal: 0.5 Petaflops (200x over current best)

• 1D Fast Fourier Transforms an N element complex vector
• Typically done as a parallel 2D FFT
• Results are reported in floating point operations per second (flops)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

0

0

1

:

Np-1

FFT rows
FFT columns

corner
turn

1 Np-1. .

Presenter
Presentation Notes
FFT benchmark focused on network bandwidth required to send large messages.

TX-2500
AIR - Slide-32

MIT Lincoln Laboratory

RandomAccess Benchmark

• Randomly updates memory (requires all-to-all communication)
• Stresses interprocessor communication of small messages
• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates memory (requires all-to-all communication)
• Stresses interprocessor communication of small messages
• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates N element table of unsigned integers
• Each processor generates indices, sends to all other processors, performs XOR
• Results are reported in Giga Updates Per Second (GUPS)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

Generate random indices

0
Table

Send,
XOR,

Update

1 Np-1

0 1 NP-1

. .

. .

Presenter
Presentation Notes
RandomAccess focuses on the ability to send very small messages.

TX-2500
AIR - Slide-33

MIT Lincoln Laboratory

IO Zone File System Benchmark

• File system benchmark tool
• Can measure large variety of file

system characteristics
• We benchmarked:

– Read and write throughput
performance (MB/s)

– 16 GB files (to test RAID, not caches)
– 64 kB blocks (best performance on

hardware)
– On six-disk hardware RAID set
– On all 432 compute nodes

Local Disk
Memory Hierarchy

CPUs

Local Cache

Local Memory

Disk Cache

Disk(s)
Our iozone tests

Presenter
Presentation Notes
Iozone measures the file system performance, whether that is one disk or a set of disks.

	TX-2500�An Interactive, On-Demand �Rapid-Prototyping HPC System
	Outline
	LLGrid Applications
	Example App: Prototype GMTI & SAR Signal Processing
	HPEC Software Design Workflow
	Outline
	Parallel Matlab (pMatlab)
	Batch vs. Interactive, On-Demand Scheduling Tradeoffs
	LLGrid User Queues
	LLGrid Usage�December 2003 – August 2007
	Usage Statistics�December-03 – August-07
	Individuals’ Usage Examples
	Outline
	TX-2500
	InfiniBand Topology
	Parallel Computing Architecture Issues
	HPC Challenge Benchmarks
	Example SAR Application
	Flops: Top500
	Memory Bandwidth: STREAM
	Network Bandwidth: FFT
	Network Latency: RandomAccess
	Iozone Results
	HPC Challenge Comparison
	Summary
	Back Up Slides
	TX-2500: Analysis of Potential Bottlenecks�Peak Bandwidths
	 Spatial/Temporal Locality Results
	HPL “Top500” Benchmark
	STREAM Benchmark
	FFT Benchmark
	RandomAccess Benchmark
	IO Zone File System Benchmark

