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LLGrid Applications

Presenter
Presentation Notes
With over 200 users, there are a wide variety of applications that have used the LLGrid for running algorithms and simulations. On the next slide, we’ll discuss more about a project that has used LLGrid to develop next-generation radar technologies. The team is depicted in the center of this slide. 
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Example App: Prototype GMTI & SAR Signal Processing
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• Airborne research sensor data collected
• Research analysts develop signal processing algorithms in 

MATLAB® using collected sensor data
• Individual runs can last hours or days on single workstation

Presenter
Presentation Notes
MIT Lincoln Laboratory is an FFRDC which specializes in sensor signal processing for the DoD. As such, much of the work involves the signal processing and analysis of sonar and radar systems. Naturally, this involves extrordinary amounts of computation capability. 
Let’s start by talking about an example application for which the development workflow is rather similar across much of what researchers at MIT Lincoln Laboratory do every day. 
In this example, an airborne research sensor takes streaming sensor data, conducts some real-time, front end signal processing, and records it to a RAID disk array. 
Once the mission completes, the data is received by research analysts who use MATLAB to study the phenomenology of the data and develop algorithms to process and analyze it. 
In developing and running these analyses, each simulation run on such data can take hours or days. The analysts could run their algorithms on smaller “toy” data sets, but they won’t know whether their algorithms are effective until they run it on the actual data. If they had the resources to run MATLAB in parallel on a grid computing system, they could be more effective in developing their signal processing algorithms. 
The analysts running these simulations are used to running in MATLAB, which is a very on-demand, interactive environment. The expect to be able to interact with their simulations by changing parameters, getting graphic and textual results, etc. 
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Algorithm Development

HPEC Software Design Workflow

Cluster

Parallel code

Embedded
Computer

Embedded codeDevelop serial code

Desktop

Verification
Parallel code Embedded code

Data Analysis
Parallel code Embedded code

Requirements
• Low barrier-to-entry 
• Interactive 
• Immediate 

execution 
• High performance 

Requirements
• Low barrier-to-entry 
• Interactive 
• Immediate 

execution
• High performance 

Presenter
Presentation Notes
This slide depicts a common development cycle for HPEC software: first, serial code is developed from which the parallel code is derived. From the parallel code, the embedded code is developed, and is verified against the parallel code. Finally, data is analyzed using both the embedded and parallel codes. To enable this workflow, the environment for developing and using the parallel code, the cluster system requires a low-barrier-to-entry, interactivity, immediate (on-demand) execution, and high performance. These requirements set up the outline for the rest of the talk. 
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Library Layer (pMatlab)Library Layer (pMatlab)

Parallel Matlab (pMatlab)

Vector/MatrixVector/Matrix CompComp TaskConduit

Application

Parallel
Library

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

Kernel LayerKernel Layer

Math
(MATLAB)

Messaging
(MatlabMPI)

Layered Architecture for parallel computing
• Kernel layer does single-node math & parallel messaging
• Library layer provides a parallel data and computation toolbox to Matlab 

users

Cluster Launch
(gridMatlab)

Presenter
Presentation Notes
pMatlab is the library layer.  The user calls pMatlab functions, which provide mechanisms for automatically distributing and parallelizing Matlab code.
MatlabMPI is the communication kernel.  pMatlab calls MatlabMPI functions to communicate data between processors.
gridMatlab enables the users to launch jobs onto a cluster through the Matlab environment interface. 
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Batch vs. Interactive, On-Demand 
Scheduling Tradeoffs

• What is the goal of the system? 
– Capability computing
– Capacity computing

• What types of algorithms and code will system run? 
– Stable algorithms
– Algorithm development

• What’s more expensive? 
– The system and it’s maintenance
– The researchers’ time

Interactive, On- 
Demand Scheduling

Batch Queue(s)

Capacity computing, 
algorithm development, 
and/or high researcher cost

Capability computing, 
stable algorithms and/or 
high system cost

Presenter
Presentation Notes
Historically, the cost of HPC systems have so outweighed the cost of the researchers using the system, there was only one choice as to how to schedule HPC resources: a batch queue. 
But with the invasion of cluster computing and other relatively low-cost avenues to HPC capabilities, there are now more choices; a batch queue is no longer the only horse in town. It is now much more feasible and defendable to operate a compute cluster in an interactive, on-demand scheduling manner. Furthermore, there are even hybrid choices to be made for systems that incorporate both on-demand and batch scheduling so that a variety of jobs can be accommodated. 
Deciding between batch and interactive, on-demand scheduling requires some design tradeoffs: 
Is the goal of the system to enable new, never-before-possible applications (capability computing), or is it going to be used to executing already-running applications faster (capacity computing)? 
 What types of algorithm/applications will be executing on the system? Are they mostly stable algorithms or are the algorithms still in development? 
 Finally, one must ask: what is more expensive, the system and its maintenance or the researcher’s time? 
At Lincoln, we have chosen an interactive, on-demand system to enable rapid prototype development. 
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Queue 

Interactive, 
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Queue 

Batch 
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Priority

Medium
Priority

Low
Priority
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Priority

High
Priority
High

Priority

Limit: 64 CPUs 
per user (more 
upon request)

Limit: 96/128 
(days/nights, 
weekends) CPUs 
per user (more 
upon request)

LLGrid User Queues 

• Not using scheduler’s interactive features (lsrun, lsgrun, bsub -I)
• Certain CPUs for interactive, on-demand jobs only
• CPU allotments will change when upgrading to larger system

Interactive Only Interactive and Batch

Presenter
Presentation Notes
So what do we do on LLGrid? 
Well, early on we ran LLGrid exclusively as an interactive, on-demand computing resource. This worked well for the most part, until we chose to accommodate batch-style jobs. After being swamped by several very large batch-style jobs, we chose to implement a hybrid scheduling policy. This policy enables two queues, one for interactive, on-demand jobs and a second for batch jobs. The interactive, on-demand queue has a higher priority on jobs slots (CPUs) than the batch queue. However, the interactive, on-demand queue has lower per-user CPU limit: only 64 CPUs per job (more upon request) versus the 96 or 128 (day/night) CPU limit on the batch queue. Within the batch queue, there are three priorities for jobs, the default of which is medium priority. Users can choose to designate their jobs as low priority, while they need to get approval to designate their jobs as high priority. 
In terms of how queues use the CPUs in the system, the interactive, on-demand queue is allowed to send jobs to any of the CPUs in the cluster, while the batch queue can only submit jobs to a fairly large subset of all of the CPUs. That means that there are some CPUs that are reserved for interactive, on-demand jobs. 
It should be added that the interactive, on-demand queue does not use any LSF scheduler interactive features like lsrun, lsgrun, or bsub -I. It uses the same bsub as the batch queue, and the gridMatlab toolbox enforces the processor limits and on-demand characteristics of that scheduling policy. 
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LLGrid Usage 
December 2003 – August 2007

LLGrid Usage

>8 CPU hours - Infeasible on 
Desktop

>8 CPUs - Requires On- 
Demand Parallel 
Computing
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Presenter
Presentation Notes
The graph on the left shows each of the 101,000 jobs plotted on a log-log graph. The x-axis shows the number of processors used, while the y-axis shows the duration of the job. The blue shaded region shows the jobs enabled by LLGrid - these are jobs that run more than a 8 CPU hours and/or run on more than 8 CPUs. 
The red box are jobs that run on more than 8 CPUs but run in less than 5 minutes - these jobs require on-demand parallel computing because batch-based system do not accommodate such jobs. Yet they could take an hour or more to run on a desktop system. 
The green rhombus in the top portion of the graph are jobs that run over 8 CPU hours - these jobs are infeasible on desktop computers. 
Most of the jobs in the lower lefthand corner are debugging execution runs to prepare for the longer execution runs. 
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Usage Statistics 
December-03 – August-07

• Most jobs use less than 32 
CPUs

• Many jobs with 2, 8, 24, 30, 
32, 64, and 100 CPUs

• Very low median job duration
• Modest mean job duration
• Some jobs still take hours on 

16 or 32 CPUs

Total jobs run 234,658
Median CPUs per job 11
Mean CPUs per job 20
Maximum CPUs per job 856
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Presenter
Presentation Notes
The data contained on the previous chart can also be viewed as histograms along each axis. The figure in the top left is a histogram of the number of processors used in each job. As one can see, most of the jobs are run on 32 processors or fewer; the current maximum number of processors that are to be used for a conventional job on the LLGrid system is 32 processors. The figure in the bottom left is a histogram that plots the number of jobs versus the duration of jobs in seconds; it shows that most jobs executed in less than 2000 seconds (around 30 minutes). 
The table provides a number of interesting statistics from the usage of the LLGrid system from December 2003 to May 2007 that further substantiates our findings. First, the median number of CPUs used for a single job was 11, while the mean number of CPUs used for a single job was 20. More interesting, though, is the median and mean job execution time: the median job duration is just 45 seconds, while the mean job duration is 52 minutes. So users are usually running jobs that would execute for over eight hours are typically executing on 32 or fewer processors in less than 60 minutes. This suggests that some users are executing debugging runs in preparation for longer parallel execution runs, while others are running simulations in parallel that complete in less than an hour, which would have taken hours on a desktop computer. 
This hypothesis has been substantiated with interviews of our user base. We have found that the users are rapidly prototyping algorithms and executing them on large datasets in a parallel fashion with very timely feedback. The on-demand execution coupled with interactive parallel computing enables them to tighten their research and development loops (or turns) helping them work more efficiently and effectively. 
Note to self: the top graph was produced with Matlab script stat_graphs.m while the bottom graph was generated with Matlab script get_stats.m.
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Individuals’ Usage Examples

• Developing non-linear 
equalization ASIC

• Post-run processing from 
overnight run

• Debug runs during day
• Prepare for long overnight 

runs

• Simulating laser propagation 
through atmosphere

• Simulation results direct 
subsequent algorithm 
development and parameters

• Many engineering iterations 
during course of day
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Presenter
Presentation Notes
An example individual usage is an LLGrid users who is developing an application specific integrated circuit (ASIC) for non-linear equalization of digital signals. The figure on the left is a usage plot of this researcher’s activity on Tuesday, May. 15, 2007. It plots the time of the day on the x-axis versus the number of processors that this individual was using in an interactive, on-demand fashion. Being able to debug algorithms and validate results in an interactive, on-demand fashion facilitates more rapid time to results both with few and a full set of processors, and it enables this scientist to run a set of long simulations every night rather than every two or three nights. 
The figure on the right is a plot of the usage of an optics engineer. It charts his usage of the LLGrid system on Friday, May 5, 2007. It shows the many parameter runs and algorithm adjustments that he is able to do in the course of a day. He needed to rapidly write, evaluate, and revise his algorithms, which were written in MATLAB. Running his algorithms on his simulation data sets on a desktop workstation typically executed for hours. The results of each simulation direct the parameter and algorithm development choices for subsequent simulations, and he usually could only execute a few of these simulations in a 24-hour period. After parallelizing his simulations, he now runs the simulations on his desktop machines with 24 to 64 LLGrid processors coming alongside his desktop computer to complete the computations. These simulations now complete in a few minutes, affording him between many more engineering turns per day. 
These examples typify the value of the interactive, on-demand capabilities of the LLGrid system in enabling MIT Lincoln Laboratory engineers and scientists to work more effectively and efficiently. 
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TX-2500

Shared
network 
storage

Rocks Mgmt, 411, 
Web Server, 

Ganglia

Service Nodes

Dual 3.2 GHz EM64-T Xeon 
(Irwindale CPUs on Lindenhurst 
Chipset)
8 GB RAM memory
Two Gig-E Intel interfaces
InfiniBand interface
Six 300-GB disk drives

PowerEdge 2850
432

• 432+3 Nodes
• 864+6 CPUs 
• 3.4 TB RAM 
• 0.78 PB of Disk
• 28 Racks

LSF-HPC 
resource 
manager/ 
scheduler

To LLAN

Presenter
Presentation Notes
The unclassified HPCMO Granted Grid Hardware consists of 432 nodes with a number of service nodes including a network file server, an LSF resource manager, login nodes, and management nodes for Rocks 411, and Ganglia. This amounts to a total of 864 processors and 3.4 TB of RAM. Each node consists of a 3.2 GHz dual Xeon, 8 GB of RAM, six 300 GB hard drives RAIDed together, two Ethernet interfaces, and an InfiniBand interface. All of the nodes run Linux. The gridsan serves its files with both NFS and SaMBa, which is mounted on the user’s computer as well as all of the LLGrid nodes. There is an internal and an external network to help avoid network contention. Each node has several versions of MATLAB installed on its local hard drive. All of the computation nodes receive their OS and application installations via DHCP and Red Hat KickStart technology using Rocks; the nodes can be reimaged within an hour. Also each node has a local installation and license for MATLAB so that they do not have to execute it across the network.
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InfiniBand Topology

Four Cisco SFS 7008P 
Core Switches (96 
InfiniBand 10-Gbps 4X 
ports each)

28 Cisco SFS 7000P 
Rack Switches 
(24 InfiniBand 10- 
Gbps 4X ports each)

28 Racks
16 Servers Each

• Two uplinks from each rack switch to each core switch
• Provides redundancy and minimizes contention

Presenter
Presentation Notes
The InfiniBand network is a two-tiered topology which provides a very flat and deterministic low-latency, high-bandwidth network fabric. Each node in a rack is connected to it’s local rack InfiniBand switch. Each rack Infiniband switch is then connected twice to each of the four core switches. This provides tremendous redundancy in the network and minimizes network contention both at the rack switches and the core switches. 
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Parallel Computing Architecture Issues
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• Standard architecture produces a “steep” multi-layered memory hierarchy
– Programmer must manage this hierarchy to get good performance

• Need to measure each level to determine system performance

• Standard architecture produces a “steep” multi-layered memory hierarchy
– Programmer must manage this hierarchy to get good performance

• Need to measure each level to determine system performance
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Presenter
Presentation Notes
Standard parallel computer architecture results in a steep memory hierarchy. Please note the performance implications for each of these hierarchy layers on the right, 
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Registers

Cache

Local Memory

Remote Memory

Disk

Instr. Operands

Blocks

Pages

Messages

• HPC Challenge with Iozone measures this hierarchy
• Benchmarks performance of architecture
• HPC Challenge with Iozone measures this hierarchy
• Benchmarks performance of architecture

HPC Challenge Benchmarks

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

•Top500: solves a system
Ax = b

•STREAM: vector operations
A = B + s x C

•FFT: 1D Fast Fourier Transform
Z = FFT(X)

•RandomAccess: random updates
T(i) = XOR( T(i), r ) 

• Iozone: Read and write to disk
(Not part of HPC Challenge)

bandwidth

latency

Presenter
Presentation Notes
HPC Challenge benchmarks target each level of the memory hierarchy.
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Target
ID

Change
Detection

SAR
Images

Raw SAR 
Data

Image
Formation

Adaptive
Beamforming

Example SAR Application

• Pulse compression
• Polar Interpolation
• FFT, IFFT (corner turn)

• Large images 
difference & 
threshold

Front-End 
Sensor Processing

Back-End 
Detection and ID

• Solve linear systems

• Many small 
correlations on 
random pieces 
of large imageTop500

FFT STREAM

Random
Access

• HPC Challenge benchmarks are similar to pieces of real apps
• Real applications are an average of many different operations
• How do we correlate HPC Challenge with application performance?

• HPC Challenge benchmarks are similar to pieces of real apps
• Real applications are an average of many different operations
• How do we correlate HPC Challenge with application performance?

Presenter
Presentation Notes
SAR Image Formation, has large scale parallel two-dimensional (2D) Inverse Fast Fourier Transform (IFFT); may require a ‘corner turn’ or a ‘gather scatter’ (depending on architecture), with large quantities of data.  Polar interpolation is known to be even more computationally intense than IFFT.

Streaming image data storage to an I/O device (write) may involve large block data transfers, storing one large image after another (Kernel 2)
Random location image sequence retrieval from an I/O device (read) also involving large quantities of data, with stressful memory access patterns, and locality issues (Kernel 3)

Kernel 4, detection, involves performing many small correlations on random pieces of large images.
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Flops: Top500

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

Problem Size=4000 MB/node

• Top500 measures register-to-CPU comms (1.42 TFlops peak)
• Top500 does not stress the network subsystem
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Presenter
Presentation Notes
As expected, if you add more CPUs, you’ll scale up the performance. HPL does not stress the network subsystem. 



TX-2500
AIR - Slide-20

MIT Lincoln Laboratory

Memory Bandwidth: STREAM

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Memory to CPU bandwidth tested (~2.7 GB/s per node)
• Unaffected by memory footprint of data set

Problem Size=4000 MB/node
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Presenter
Presentation Notes
STREAM challenges the memory-to-CPU bandwidth. This shows that, as expected, the performance scales linearly with the number of CPUs added to the network. There is also no impact on the network as can be seen on the left in the Ethernet to InfiniBand comparison. 
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Network Bandwidth: FFT

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Infiniband makes gains due to higher bandwidth
• Ethernet plateaus around 256 CPUs

Problem Size=4000 MB/node
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Presenter
Presentation Notes
Here we see the first example of a benchmark that is affected by the network; this can be seen with the graph on the left. Not only does the Ethernet curve lag the InfiniBand curve as the CPUs are scaled up, but the Ethernet curve starts to turn over indicating that the network is becoming the bottleneck to scaling up performance. This suggests that the bandwidth of Ethernet limits the scaling performance of the FFT benchmark, since FFT requires significant bandwidth to transmit the vector subsets of the 2-dimensional FFT of this benchmark. 
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Network Latency: RandomAccess

Problem Size Comparison - InfiniBandEthernet vs. InfiniBand

• Low latency of InfiniBand drives GUPS performance
• Strong mapping to embedded interprocessor comms
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Presenter
Presentation Notes
The RandomAccess benchmark thrives in a low-latency network because it is getting memory updates from the global memory space. The high latency of Ethernet cause performance to decrease as CPUs/nodes are added to the execution pool. 
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Iozone Results

Command used: iozone -r 64k -s 16g -e -w -f /state/partition1/iozone_run

• 98% of the RAID arrays exceeded 50 MB/s throughput 
• Comparable performance to embedded storage
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Presenter
Presentation Notes
This chart shows a plot of the write performance versus the read performance of the 6-disk hardware RAID5 disk subsystems on 416 nodes. Each point on this scatter plot is a single node’s read and write performance on a 16 GB data file. It is remarkable how much variation is shown in performance amongst all of the RAID systems. 
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HPC Challenge Comparison
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Presenter
Presentation Notes
This chart compares the scaling curves of the four major benchmarks of the HPC Challenge benchmark suite. Each of the curves is shown to relate to a different part of the memory hierarchy. 
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Summary

• Low barrier-to-entry
• Interactive
• Immediate execution
• High Performance

• Low barrier-to-entry
• Interactive
• Immediate execution
• High Performance

Parallel Matlab and User Statistics

HPC Challenge and Results

Algorithm Development
Parallel code Embedded codeDevelop serial code

Verification
Parallel code Embedded code

Data Analysis
Parallel code Embedded code

Presenter
Presentation Notes
During the course of this talk, we addressed the low barrier-to-entry, interactivity and immediate execution requirements with the parallel matlab infrastructure. We then looked at the performance of the system with the HPC Challenge benchmark suite results. In the future we intend to run the HPEC Challenge benchmark suite on the system to get a closer comparison between the cluster and embedded systems. 
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Back Up Slides
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Presentation Notes
Backup banner slide
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TX-2500: Analysis of Potential Bottlenecks 
Peak Bandwidths
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Presenter
Presentation Notes
This slide depicts the subsystems of two TX-2500 compute nodes and the networks that connect them. The orange boxes are the Gigabit Ethernet networks, while the red boxes depict the InfiniBand network. Notice the extremely high backplane bandwidths of the InfiniBand switches compared to the greatly oversubscribed Gigabit Ethernet switches. 
The chart also depicts the bandwidths of the shared front-side bus (FSB) which is shared between the two Intel Xeon processors. The Lindenhurst chip set provides connectivity to the dual-channel DRAM memory, two Gigabit Ethernet interfaces, an InfiniBand interface, and a hardware RAID controller with 6 Ultra-320 SCSI 10k RPM disks. 
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Spatial/Temporal Locality Results
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Scientific
Applications

• HPC Challenge bounds real applications
– Allows us to map between applications and benchmarks

• HPC Challenge bounds real applications
– Allows us to map between applications and benchmarks

Intelligence, Surveillance, Reconnaisance
Applications

Presenter
Presentation Notes
HPC Challenge bounds the performance of real appliations.
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HPL “Top500” Benchmark

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Petaflops (8x over current best)

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Petaflops (8x over current best)

• High Performance Linpack (HPL) solves a system Ax = b
• Core operation is a LU factorization of a large MxM matrix
• Results are reported in floating point operations per second (flops)

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

LU
Factorization

A

L

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

U

2D block cyclic distribution
is used for load balancing

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

Presenter
Presentation Notes
Top500 benchmarks measures processor performance.
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STREAM  Benchmark

• Basic operations on large vectors (requires no communication)
• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Petabytes/second (40x over current best)

• Basic operations on large vectors (requires no communication)
• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Petabytes/second (40x over current best)

• Performs scalar multiply and add
• Results are reported in bytes/second
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Presenter
Presentation Notes
STREAM benchmark targets main memory bandwidth.
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FFT  Benchmark

• FFT a large complex vector (requires all-to-all communication)
• Stresses interprocessor communication of large messages
• DARPA HPCS goal: 0.5 Petaflops (200x over current best)

• FFT a large complex vector (requires all-to-all communication)
• Stresses interprocessor communication of large messages
• DARPA HPCS goal: 0.5 Petaflops (200x over current best)

• 1D Fast Fourier Transforms an N element complex vector
• Typically done as a parallel 2D FFT
• Results are reported in floating point operations per second (flops)
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Presenter
Presentation Notes
FFT benchmark focused on network bandwidth required to send large messages.
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RandomAccess Benchmark

• Randomly updates memory (requires all-to-all communication)
• Stresses interprocessor communication of small messages
• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates memory (requires all-to-all communication)
• Stresses interprocessor communication of small messages
• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates N element table of unsigned integers
• Each processor generates indices, sends to all other processors, performs XOR
• Results are reported in Giga Updates Per Second (GUPS)
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Presenter
Presentation Notes
RandomAccess focuses on the ability to send very small messages.
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IO Zone File System Benchmark

• File system benchmark tool
• Can measure large variety of file 

system characteristics
• We benchmarked:

– Read and write throughput 
performance (MB/s)

– 16 GB files (to test RAID, not caches)
– 64 kB blocks (best performance on 

hardware)
– On six-disk hardware RAID set
– On all 432 compute nodes

Local Disk
Memory Hierarchy

CPUs

Local Cache

Local Memory

Disk Cache

Disk(s)
Our iozone tests

Presenter
Presentation Notes
Iozone measures the file system performance, whether that is one disk or a set of disks. 
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