
HPEC Challenge SAR Benchmark pMatlab Implementation and
Performance

Julia S. Mullen, Theresa Meuse, Jeremy Kepner
{jsm,tmeuse,kepner}@ll.mit.edu

MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420

Introduction 1

Synthetic Aperture Radar (SAR) is an important application
for the HPEC and HPCS communities. The HPEC
Challenge SAR Benchmark has been designed to test the
performance of parallel computing and parallel storage
systems using a representative set of computational and I/O
intensive tasks associated with signal processing. By
design, the benchmark is scalable and appropriate for
deployment on systems ranging from desktop to petascale
parallel architectures.

This HPEC Benchmark is also part of the High Productivity
Computing Systems (HPCS) Scalable Synthetic Compact
Application (SSCA) Suite. While this suite is designed to
stress test large multiprocessor systems, the HPCS Program
recognizes and works to address the inherent high cost
associated with parallel code development. As part of this
effort, we describe a method for parallelizing the
benchmark using pMatlab. We show that this is a highly
productive approach, providing good speed-up for minimal
code changes.

SAR System Benchmarks
The SSCA #3 represents a generalized sensor processing
chain that consists of a front-end sensor processing stage
and a back-end knowledge formation stage, both of which
include significant data I/O components. This two stage
processing is representative of a broad range of military and
commercial image processing applications where data is
acquired and processed in one order and later retrieved and
processed in a different order. The Benchmark kernels
were described and presented at HPEC 2005 [1]. Prior to
and in addition to the two stages mentioned above, the
Scalable Data Generator creates and stores the ‘raw’ SAR
data.

The diagram in Figure 1 details the individual stages. In
Stage 1, the raw data is read, an image is formed, templates
are inserted and an image is written to disk for a user
specified number of images. Stage 2 consists of a similar
loop within which a specified number of image sequences
are randomly chosen to be read, each through its own full
grid depth (number of images in the sequence). For each
chosen image sequence, the difference between each of its
sequential pairs of images is computed, to discern all newly

This work is sponsored by the Department of the Air Force under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily
endorsed by the United States Government

changed regions. These newly changed regions (correspond
to newly inserted templates) are then identified (detected)
and stored in labeled sub images.

The benchmark is validated by comparing the location,
identity, and rotation of the letters detected against the set
that was known to be inserted at that particular sensor
processing stage.

Figure 1: Block diagram of HPCS SSCA#3 Benchmark

Approach to Parallelization
A quick profile of the serial execution indicates that the
bulk of the run time is spent generating the ‘raw’ SAR data
using the Scalable Data Generator (SDG) module, and
forming the SAR image (Kernel 1). The main loop of both
Stage 1 and Stage 2 appeared to be straightforward to
parallelize, while the SDG required slightly more care to
correctly collect and sum the contributions of different
reflectors.

The serial code is written in MATLAB® and the parallel
version used the pMatlab toolkit.[2] The choice of code
environment reflects the growing use of MATLAB as a
rapid, highly productive development environment for both
proof of concept and production. Similarly, pMatlab
provides a rapid serial-to-parallel porting of vetted code.
Specifically, the use of parallel global array semantics
(PGAS) within pMatlab better reflects the engineer’s
mathematical and physical models of the simulation as
compared with traditional local-global mapping and MPI.
The global array semantics and distributed maps take care
of the local-to-global mapping and communication,
allowing the user to rapidly parallelize a serial code with

minimal code changes. The function overloading capability
of MATLAB allows the user to call the MATLAB
functions of their serial code with the distributed maps

Initially the benchmark was parallelized along strictly
parameter sweep, or embarrassingly parallel lines, focusing
on three main modules; the SDG, the image formation
(Kernel 1) and target detection (Kernel 4). The
parallelization of Kernels 1 and 4 used a simple loop
distribution strategy such that each processor formed a
block of images, and all computation for a given image
remained within the processor. (The I/O is thus performed
by each processor as it reads in data, processes it and writes
the result to disk.) The SDG required the distribution,
gathering, and summing of the data calculation. In total,
this approach to parallelization resulted in the creation of
three distributed arrays, one for each module of the
computation stages, and one for the SDG. The number of
new lines of pMatlab code was less than 30 in a code base
of over 1400 lines of MATLAB code.

Parallel Results
Preliminary tests used the LLGrid cluster consisting of Dell
PowerEdge dual-processor Xeons connected by Gigabit
Ethernet.[3] Initial tests of the SDG parallelization used up
to 16 processors and a scale factor of 10 corresponding to
an image size of roughly 2.5K x 3.8 K pixels. Speedup
results indicate that linear speed-up is achieved.

The results presented here are from slightly larger runs
using up to 64 processors and a scale of 12 which generates
an image of approximately 3K by 4.5K pixels. (This pixel
size also corresponds to the size of the 2D FFT computed as
part of the image formation). In Figure 2, we see that close
to linear speedup was achieved for the image formation
kernel. The target detection speed-up, while almost linear
for 2 processors, does not perform as well as for image
formation, likely due to the variation of the image depths of
across image sequences, leading to load imbalance.

1

10

100

1 2 4 8 16 32 64
Number of Processors

Sp
ee

du
p

Image Formation 1

Target detection 1
Linear

Figure 2: Speedup for 2, 4, 8, 16, 32, and 64 processors

The Overall Compute and I/O mode performance results are
presented in Figure 3. As in Figure 2, the Overall Compute
(image formation and target detection) performance shows
close to linear speedup. The Overall I/O includes all I/O in
Stage 1 and Stage 2. In Stage 1 the raw SAR data is read in
(Kernel 1), and the image is written out to disk (Kernel 2).
In Stage 2 all the z images (depth) are read in for a given x,
y location (Kernel 3). After the targets have been detected

the sub-images containing the targets are written to disk
(Kernel 4). From one image sequence to another the depth
varies and therefore the number of images to be analyzed
can vary greatly from processor to processor. The resulting
load imbalance indicates a trend away from linear speedup
as the number of processors increases.

1

10

100

1 2 4 8 16 32 64
Number of processors

S
pe

ed
up

linear
Overall I/0
Overall Compute

Figure 3: Overall File I/O and Computation Performance for

2, 4, 8, 16, 32, and 64 processors

Summary
The HPEC Challenge SAR Benchmark has been
parallelized using pMatlab. This benchmark highlights
several key challenges in parallel processing; the creation
and analysis of large images (and thus computation of large
2-D FFTs), load imbalances (as in the detection kernel
mentioned above), and various file I/O issues relating to
reading and writing of many small files as well as
individual large files. The parallel code achieved linear
speedup with the addition of less than 30 lines of new code
(approximately 2% of the original serial code).

References
 [1] Ryan Haney, Theresa Meuse, Jeremy Kepner and James

Lebak, “The HPEC Challenge Benchmark Suite”, High
Performance Embedded Computing (HPEC) Workshop 2005,
September 2005.

[2] N. Travinin, R. Bond, J. Kepner, H. Kim, R. Haney, “pMatlab:
High Productivity, High Performance Scientific Computing”,
SIAM CSE 2005, February 12-15, 2005, Orlando, FL

[3] A.I. Reuther, T. Currie, J. Kepner, H.G. Kim, A. McCabe,
M.P. Moore, N. Travinin, “On-Demand Grid Computing
Using gridMatlab and pMatlab,” In Proceedings of the
HPCMO Users Group Conference, Williamsburg, VA, 8
June 2004.

