

Advanced Hardware and Software Technologies for Ultra-long FFT's

Hahn Kim, Jeremy Kepner, M. Michael Vai, Crystal Kahn

HPEC 2005

21 September 2005

MIT Lincoln Laboratory

This work is sponsored by the Department of the Air Force under contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government

HPEC 2005-1 21 Sept. 2005

Background

- FPGA-Based Hardware Technology
- Parallel Software Technology
- Conclusions

Introduction

- Can use FFT to detect weak signals
 - Reduce noise floor
 - Longer intervals result in higher gain
- Real-time, ultra-long FFT processor is a critical enabling component

FFT Technology Space

Objective: Extend state-of-the-art to ultra-long FFT's

- Background
- FPGA-Based Hardware Technology
- Parallel Software Technology
- Conclusions

Ultra-long FFT Implementation Challenges

- Beyond ~32 K-pt FFT, off-chip memory for FIFO and twiddle factors is required
 - Full duplex memory access is a challenge
- Lincoln architecture selected for ultra-long FFT
 - "A Systolic FFT Architecture for Real Time FPGA Systems," HPEC 2004.

- MN-pt FFT can be implemented with an M-pt FFT and an N-pt FFT
 - E.g. 1 G-pt FFT \Rightarrow M = 32 K-pt, N = 32 K-pt
 - Each 32 K-pt FFT fits into an FPGA

• Lincoln has developed a corner turn architecture that operates at 1 GSPS

Real-Time FFT Architecture

Reconfigurable architecture allows for multiple implementations: e.g. 1 G-pt @ 1 GSPS or 100 M-pt @ 100 MSPS X 10 channels

Real-time Example FFT Implementation

Current FFT Capabilities

- Symbiotic Communications (SYCO) real-time processor
 - 8 K-pt FFT
 - 450 GOPS @ 130 Watts
 - 208 FFT butterflies
 - No on-board memory
- "Rapid Prototyping of a Realtime Range Compression Processor," HPEC 2005 Poster Session

Future Ultra-long FFT Capabilities

- Processor enhancement
 - Provides on-board memory banks for performing real-time corner turns
 - Performs form-factor optimization
- Develop a universal FFT architecture
 - 100M-Pt FFT X 10 channels
 - 1G-Pt FFT

- Background
- FPGA-Based Hardware Technology
- Parallel Software Technology
- Conclusions

Motivation for Out-of-Core Technology

• Data are often larger than memory on a single processor.

• Out-of-core technology uses memory as a "window" into data stored on disk.

Out-of-Core Memory Management: pMatlab eXtreme Virtual Memory (XVM)

Data Organization

- 1. Data starts as a vector with length MN
- 2. Divide into M vectors with length N
- 3. Reorganize as a MxN matrix

4. Distribute rows across processors

Hierarchical Matrices and Maps

HPEC 2005-16 21 Sept. 2005

Ultra-long FFT

HPEC 2005-17 21 Sept. 2005

Scalability

- pMatlab XVM supports ultra-long FFT's with little degradation in performance
- Maximum problem size = size of available disk space
- 1 TB represents a 64 G-pt double-precision, complex FFT

- Background
- FPGA-Based Hardware Technology
- Parallel Software Technology
- Conclusions

System Development Methodologies

- Presented FPGA architecture for real-time, ultra-long FFT's
 - Can implement 1 G-pt FFT with smaller FFT's
 - Use SYCO processor to implement FFT's
 - Developed real-time corner turn architecture
- Future
 - Develop a universal ultra-long FFT architecture
 - Allows multiple configurations in same hardware
 - 1 G-Pt FFT
 - 100 M-Pt FFT X 10 channels
 - Application-specific precision and dynamic analysis

- Presented parallel software architecture for ultra-long FFT's
 - Added out-of-core capability to pMatlab
 - Supports ultra-long FFT's with little degradation in performance
 - Demonstrated 64 G-pt FFT (1 TB)
- Future
 - Expand cluster to enable 64 T-pt FFT (1 PB)

Acknowledgements

- Ken Senne
- Gerry Banner
- Leslie Alger
- Bob Bond
- Cy Chan
- Hector Chan
- Tim Currie
- Preston Jackson

- Andy McCabe
- Peter Michaleas
- Michael Moore
- Charles Rader
- Albert Reuther
- Jonathan Scalera
- Nadya Travinin
- Edmund Wong