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Abstract 
Algorithm implementation efficiency is key to delivering 
high-performance computing capabilities to demanding, 
high throughput signal and image processing applications 
and simulations.  Significant progress has been made in 
compiler optimization of serial programs, but many 
applications require parallel processing, which brings with 
it the difficult task of determining efficient mappings 
of algorithms to multiprocessor computers. The pMapper 
infrastructure addresses the problem of performance 
optimization of multistage MATLAB® applications on 
parallel architectures. pMapper is an automatic 
performance tuning library written as a layer on top of 
pMatlab. pMatlab is a parallel Matlab toolbox that provides 
MATLAB users with global array semantics.  While 
pMatlab abstracts the message-passing interface, the 
responsibility of generating maps for numerical arrays still 
falls on the user. A processor map for a numerical array is 
defined as an assignment of blocks of data to processing 
elements. Choosing the best mapping for a set of numerical 
arrays in a program is a nontrivial task that requires 
significant knowledge of programming languages, parallel 
computing, and processor architecture. pMapper automates 
the task of map generation. This abstract addresses the 
design details of the pMapper infrastructure and presents 
preliminary results.  

*This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions  
and recommendations are those of the author and are not necessarily endorsed by the United States Government. 
 

 
Introduction 
Automatic performance optimization of serial programs has 
been recognized as an important area of research and 
considerable progress has been made [1,2]. Additionally, 
efficient parallel algorithms exist for various functions such 
as FFT [3] and matrix multiplication [4]. The pMapper 
architecture is designed to tackle the global optimization 
problem of distributing signal and image processing 
applications that consist of multiple functions and 
computational stages.  
 
The two primary goals of pMapper design are (1) fast time 
to solution and (2) ease of programming. pMatlab [5] 
allows MATLAB users not familiar with the message-
passing style of programming [6, 7] to take advantage of 
parallel computers. However, mapping data objects is a 
non-trivial task requiring significant knowledge of parallel 
programming and parallel computer architecture. pMapper 
is designed for scientists not familiar with issues associated 
with parallel computing.  
 
In the code in Figure 1, the arrays considered for 
distribution, A, B, C, D, and E (lines 2 and 3), are tagged 
with a special variable p. This example illustrates that the 
changes (in bold italics) to the serial code are minimal.  
 

In order to efficiently generate maps for arbitrary 
programs, pMapper requires an initialization phase. During 
initialization, pMapper collects information about the 
specifics of the parallel computer architecture and the 
pMatlab library. The collected information is used to 
construct a performance model. Once the performance 
model is constructed, it is used to generate maps for the 
tagged arrays. The mapping occurs at runtime and is done 
for each program submitted to the mapper.  This naturally 
yields a two-phase system.  
 

 

%Initialize variables
1. M...; N...; w...;
2. A=rand(M,N,p); B=zeros(M,N,p); 
3. C=zeros(M,N,p); D=rand(M,N,p); E=zeros(M,N,p); 
%Perform computation
4. B(:,:) = fft(A,[],1); %FFT along columns
5. C(:,:) = fft(B,[],2); %FFT along rows
6. E(:,:) = D*C; %matrix multiply
7. E %print out E

Figure 1 
 
pMapper Design Specifics 
Phase 1: Initialization 
Figure 2 provides a block diagram of the initialization 
phase of the mapping framework.  
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Figure 2 
 
Initialization is done once at installation time. The inputs 
into the initializer are the parallel library information, the 
parallel computer specification, and the strategy object. 
The initializer runs timing experiments specific to the 
system and library version in order to construct the 
performance model. The strategy object is optional and 
contains general mapping heuristics provided by an expert 
parallel programmer.  
 
The output of the initializer is the performance model used 
to generate maps. This model is used in the mapping and 
execution phase. The initializer and the resulting 
performance model differ with mapping approaches. For 
this iteration of the research the mapping was performed by 
a dynamic programming based approach, which used a 
timing database performance model. If, on the other hand, a 
neural network was used for the mapping and execution 
phase, then the performance model would be a trained 
neural network.  



Phase 2: Mapping and Execution 
pMapper uses lazy evaluation to collect as much 
information as possible about the program structure prior to 
assigning maps to distributed arrays. Another key design 
concept is runtime evaluation, which is made possible by 
the lazy evaluation of the program. 
 
In the code example in Figure 1, lines 2 and 3, the output of 
an array constructor (rand(), zeros(), etc) produces a 
data object that stores necessary information about the 
array. No memory is allocated for the data of the numerical 
arrays at construction time. Similarly, when the fft() 
function call is made, no FFT is performed. Instead, tagged 
variables, along with functions that operate on them, are 
inserted into a signal flow graph. At this point in the 
program the variables and function calls exist in pMapper 
controlled space. The transfer of control from pMapper to 
the MATLAB environment occurs when the program 
requires access to the data. An example of such operation is 
the display operation, or simply omission of the semicolon 
in MATLAB syntax, as illustrated on line 7 in Figure 1. 
Intercepting MATLAB function calls and storing variables 
in pMapper space is possible through overloading of 
MATLAB functions, as was done in pMatlab [5] and Star-
P [9].  
 

 
Figure 3 

In Figure 3, the performance model is the output from the 
initialization phase (Figure 2). The Expert Mapping System 
(EMS) uses the performance model to generate the atlas, or 
collection of maps, for the program. Once the maps are 
generated, the executor combines the map information with 
the signal flow graph and executes the users’ code.  
 
Results 
Figures 4 and 5 show both the speedup curve and the 
output maps for the application in Figure 1.  This 
application has a high communication to computation ratio 
and is made up of important kernels present in many signal 
processing codes. The results were obtained using 
simulated timing data that described a low-latency 
architecture. While pMapper was originally designed for 
pMatlab running on a cluster, it also shows great promise 
for mapping applications to embedded systems. 
 
Conclusion 
pMapper is a two-phase mapping system designed as an 
automatic mapper for parallel MATLAB programs. It is 
written purely in MATLAB and currently is targeted as a 
mapper that produces pMatlab code for annotated 

MATLAB code. pMapper supports both multi-stage and 
multi-pipeline applications. The maps generated by 
pMapper allow for significant speedup of signal and image 
processing applications. The mapping overhead is low 
enough to allow MATLAB users to generate the mappings 
at runtime. Additionally, pMapper requires minimal 
changes to the code, thus making the task of writing 
parallel programs accessible to users unfamiliar with 
parallel programming issues. Initial experiments indicate 
that pMapper can also be used for other language 
implementations on other architectures. 
 

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

Number of Processors

Sp
ee

du
p

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

Number of Processors

Sp
ee

du
p

 
Figure 4 

 

 
Figure 5 

#procs Tp(s)

MULTFFTFFT 94001 A B C D E
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2351A B C D E
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MULTFFTFFT8 A B C D E

MULTFFTFFT11 937A B C D E
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