
pMapper: Automatic Mapping of Parallel Matlab Programs*
Nadya Travinin, Henry Hoffmann, Robert Bond, Hector Chan, Jeremy Kepner, Edmund Wong

{nt, hoffmann, rbond, chanh, kepner, elwong}@ll.mt.edu
MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
Algorithm implementation efficiency is key to delivering
high-performance computing capabilities to demanding,
high throughput signal and image processing applications
and simulations. Significant progress has been made in
compiler optimization of serial programs, but many
applications require parallel processing, which brings with
it the difficult task of determining efficient mappings
of algorithms to multiprocessor computers. The pMapper
infrastructure addresses the problem of performance
optimization of multistage MATLAB® applications on
parallel architectures. pMapper is an automatic
performance tuning library written as a layer on top of
pMatlab. pMatlab is a parallel Matlab toolbox that provides
MATLAB users with global array semantics. While
pMatlab abstracts the message-passing interface, the
responsibility of generating maps for numerical arrays still
falls on the user. A processor map for a numerical array is
defined as an assignment of blocks of data to processing
elements. Choosing the best mapping for a set of numerical
arrays in a program is a nontrivial task that requires
significant knowledge of programming languages, parallel
computing, and processor architecture. pMapper automates
the task of map generation. This abstract addresses the
design details of the pMapper infrastructure and presents
preliminary results.

*This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Introduction
Automatic performance optimization of serial programs has
been recognized as an important area of research and
considerable progress has been made [1,2]. Additionally,
efficient parallel algorithms exist for various functions such
as FFT [3] and matrix multiplication [4]. The pMapper
architecture is designed to tackle the global optimization
problem of distributing signal and image processing
applications that consist of multiple functions and
computational stages.

The two primary goals of pMapper design are (1) fast time
to solution and (2) ease of programming. pMatlab [5]
allows MATLAB users not familiar with the message-
passing style of programming [6, 7] to take advantage of
parallel computers. However, mapping data objects is a
non-trivial task requiring significant knowledge of parallel
programming and parallel computer architecture. pMapper
is designed for scientists not familiar with issues associated
with parallel computing.

In the code in Figure 1, the arrays considered for
distribution, A, B, C, D, and E (lines 2 and 3), are tagged
with a special variable p. This example illustrates that the
changes (in bold italics) to the serial code are minimal.

In order to efficiently generate maps for arbitrary
programs, pMapper requires an initialization phase. During
initialization, pMapper collects information about the
specifics of the parallel computer architecture and the
pMatlab library. The collected information is used to
construct a performance model. Once the performance
model is constructed, it is used to generate maps for the
tagged arrays. The mapping occurs at runtime and is done
for each program submitted to the mapper. This naturally
yields a two-phase system.

%Initialize variables
1. M...; N...; w...;
2. A=rand(M,N,p); B=zeros(M,N,p);
3. C=zeros(M,N,p); D=rand(M,N,p); E=zeros(M,N,p);
%Perform computation
4. B(:,:) = fft(A,[],1); %FFT along columns
5. C(:,:) = fft(B,[],2); %FFT along rows
6. E(:,:) = D*C; %matrix multiply
7. E %print out E

Figure 1

pMapper Design Specifics
Phase 1: Initialization
Figure 2 provides a block diagram of the initialization
phase of the mapping framework.

INITIALIZER

PERFO RM ANCE
M ODEL

PARALLEL
LIBRARY

PARALLEL
CO M PUTER

STRATEG Y
O BJECT

INITIALIZER

PERFO RM ANCE
M ODEL

PARALLEL
LIBRARY

PARALLEL
CO M PUTER

STRATEG Y
O BJECT

Figure 2

Initialization is done once at installation time. The inputs
into the initializer are the parallel library information, the
parallel computer specification, and the strategy object.
The initializer runs timing experiments specific to the
system and library version in order to construct the
performance model. The strategy object is optional and
contains general mapping heuristics provided by an expert
parallel programmer.

The output of the initializer is the performance model used
to generate maps. This model is used in the mapping and
execution phase. The initializer and the resulting
performance model differ with mapping approaches. For
this iteration of the research the mapping was performed by
a dynamic programming based approach, which used a
timing database performance model. If, on the other hand, a
neural network was used for the mapping and execution
phase, then the performance model would be a trained
neural network.

Phase 2: Mapping and Execution
pMapper uses lazy evaluation to collect as much
information as possible about the program structure prior to
assigning maps to distributed arrays. Another key design
concept is runtime evaluation, which is made possible by
the lazy evaluation of the program.

In the code example in Figure 1, lines 2 and 3, the output of
an array constructor (rand(), zeros(), etc) produces a
data object that stores necessary information about the
array. No memory is allocated for the data of the numerical
arrays at construction time. Similarly, when the fft()
function call is made, no FFT is performed. Instead, tagged
variables, along with functions that operate on them, are
inserted into a signal flow graph. At this point in the
program the variables and function calls exist in pMapper
controlled space. The transfer of control from pMapper to
the MATLAB environment occurs when the program
requires access to the data. An example of such operation is
the display operation, or simply omission of the semicolon
in MATLAB syntax, as illustrated on line 7 in Figure 1.
Intercepting MATLAB function calls and storing variables
in pMapper space is possible through overloading of
MATLAB functions, as was done in pMatlab [5] and Star-
P [9].

Figure 3

In Figure 3, the performance model is the output from the
initialization phase (Figure 2). The Expert Mapping System
(EMS) uses the performance model to generate the atlas, or
collection of maps, for the program. Once the maps are
generated, the executor combines the map information with
the signal flow graph and executes the users’ code.

Results
Figures 4 and 5 show both the speedup curve and the
output maps for the application in Figure 1. This
application has a high communication to computation ratio
and is made up of important kernels present in many signal
processing codes. The results were obtained using
simulated timing data that described a low-latency
architecture. While pMapper was originally designed for
pMatlab running on a cluster, it also shows great promise
for mapping applications to embedded systems.

Conclusion
pMapper is a two-phase mapping system designed as an
automatic mapper for parallel MATLAB programs. It is
written purely in MATLAB and currently is targeted as a
mapper that produces pMatlab code for annotated

MATLAB code. pMapper supports both multi-stage and
multi-pipeline applications. The maps generated by
pMapper allow for significant speedup of signal and image
processing applications. The mapping overhead is low
enough to allow MATLAB users to generate the mappings
at runtime. Additionally, pMapper requires minimal
changes to the code, thus making the task of writing
parallel programs accessible to users unfamiliar with
parallel programming issues. Initial experiments indicate
that pMapper can also be used for other language
implementations on other architectures.

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

Number of Processors

Sp
ee

du
p

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Near linear speedup

0 5 300

5

30

Number of Processors

Sp
ee

du
p

Figure 4

Figure 5

#procs Tp(s)

MULTFFTFFT 94001 A B C D E

MULTFFTFFT 91742 A B C D E

MULTFFTFFT4
2351A B C D E

1176
MULTFFTFFT8 A B C D E

MULTFFTFFT11 937A B C D E

#procs Tp(s)

MULTFFTFFT 94001 A B C D EMULTFFTFFT MULTFFTFFT 94001 A B C D E

MULTFFTFFT 91742 A B C D EMULTFFTFFT MULTFFTFFT 91742 A B C D E

MULTFFTFFT4
2351A B C D EMULTFFTFFT MULTFFTFFT4
2351A B C D E

1176
MULTFFTFFT8 A B C D E 1176
MULTFFTFFT MULTFFTFFT8 A B C D E

MULTFFTFFT11 937A B C D EMULTFFTFFT11 937A B C D E

Expert
Mapping
System

Signal-flow
Extractor

Annotated
Program

Perform.
Model

Atlas

Signal-flow
Graph

Program
OutputExecutor

Parallel
Computer

Expert
Mapping
System

Signal-flow
Extractor

Annotated
Program

Annotated
Program

Perform.
Model

Perform.
Model

AtlasAtlas

Signal-flow
Graph

Program
OutputExecutor

Parallel
Computer

References
[1] A. Petitet, R.C. Whaley, J.J. Dongarra, “Automated Empirical
Optimizations of Software and the ATLAS Project,” HPEC 2000
Workshop, Lexington, MA, September 2000.

[2] J. Moura, M. Pueschel, M. Veloso, J.R. Johnson, R.W.
Johnson, D. Padua, V. Prasanna, “SPIRAL: Automatic
Implementation of Signal Processing Algorithms,” HPEC 2000
Workshop, Lexington, MA, September 2000.

[3] M. Frigo and S.G. Johnson, “FFTW,” http://www.fftw.org.

[4] Robert A. van de Geijn, Using PLAPACK. The MIT Press,
1997.

[5] Jeremy Kepner and Nadya Travinin, “Parallel Matlab: The
next generation,” HPEC 2003 Workshop, Lexington, MA,
September 2000.

[6] J. Kepner, “Parallel Programming with MatlabMPI,” HPEC
2001 Workshop, Lexington, MA, September 2000.

[7] J. Kepner, “300x Matlab,” HPEC 2002 Workshop.

[8] Michael Wolfe, High Performance Compilers for Parallel
Computing. Addison-Wesley, 1995.

[9] R. Choy, “Star-P: High Productivity Parallel Computing,”
High Performance Embedded Computing (HPEC) Workshop
2004, Lexington, MA, September 2004.

