
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States
Government

Advanced Hardware and Software Technologies for Ultra-long FFT’s
Hahn Kim, Jeremy Kepner, M. Michael Vai, Crystal Kahn

{hgk, kepner, mvai, kahn}@ll.mit.edu
MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02420-9108

Abstract
The desire to digitally perform as many processing
steps as practical in sensor applications continues to
push the point of digitization toward the RF front-
end. Modern sensor applications thus often have to
collect and process large amounts (Terabytes) of data
at high sampling rates (Gigasamples per second).
Developing real-time signal processing technologies
(e.g., real-time Gigapoint FFT’s) for these
applications has become increasingly more difficult.
In this paper, we will discuss advanced hardware and
software technologies for ultra-long FFT operations.

1 Introduction

Modern sensors are capable of collecting data
with significantly large sizes at very high rates. For
example, as digital receivers move well into the GHz
sampling regime, it has become common to collect
Terabytes of data. Developing signal processing
technologies that can process these large data sizes in
real-time is becoming increasingly difficult.

The MIT Lincoln Laboratory has been at the
forefront of developing advanced FFT technologies.
A survey of state-of-the-art FFT technologies is
shown in Figure 1. COTS FFT technology, shown in
the lower-left corner, is driven by communication
applications. The near-term objective is to develop
systems that can process 1 Gigapoint FFT’s at 1.2
Gigasamples per second (GSPS). Clearly, current
COTS technologies cannot meet these criteria.

Real-time implementations of FFT’s require
dedicated hardware, e.g., ASIC’s or FPGA’s.
Lincoln has developed embedded hardware
technologies that can process FFT’s at high data rates
in real-time; a systolic FFT architecture implemented
with FPGA’s can process an 8K-point FFT at 1.2
GSPS [1].

Parallel processing technologies, such as the
Parallel MATLAB library (pMatlab), allow offline
processing of data [2]. An FFT implemented with
pMatlab running on 128 CPU’s can process a 4 G-
point FFT at 10 MSPS [3].

We have developed an extension to pMatlab
known as eXtreme Virtual Memory (XVM), which
enables pMatlab applications to process data sets
orders of magnitude larger by using out-of-core
methods. Out-of-core methods use memory as a
“window” to view a section of the data stored on disk
at a time. Software technologies such as pMatlab
XVM provide a means for developing and validating

Figure 1 – Survey of FFT technologies

Figure 2 – Parallel pipeline FFT architecture

algorithms for ultra-long FFT’s before implementing
them in hardware.

Sections 2 and 3 will discuss Lincoln hardware
and software technologies for ultra-long FFT’s,
respectively. Section 4 will summarize strategies for
combining these technologies to develop real-time
systems for ultra-long FFT’s.

2 Hardware Technology

Lincoln has developed a systolic architecture for
real-time FFT’s, optimized in modularity and local
communication for ASIC and FPGA implementations
[1]. Figure 2 depicts this architecture as multiple
parallel pipelines of serial FFT’s.

The inter-pipeline interconnections in the last
stages are determined by the number of parallel
pipelines, independent of the FFT size. In theory,
this architecture can be extended to any size input.
For example, a 1 G-point FFT would require 30
stages of butterfly modules. Large-scale
implementations, however, present several
challenges. For example, external memory would be
required to store the twiddle factors and to implement
FIFO buffers between butterfly stages. A 1 G-point
FFT would require 1 Gigawords of memory for the
twiddle factors and 1 Gigawords of memory

Figure 3 – Parallel FFT Software Performance

for the buffers. If one word is 4 bytes, this equals 8
GB of memory.

In theory, an ASIC can be created with the
required memory but, in practice, this is very
difficult. Integrating external memory is feasible
using state-of-the-art memory technology, but the
access data rate makes implementing the interface
between memory and the FFT chip a challenge.

No FPGA has the required amount of memory.
So far, the largest FFT implemented in an FPGA is
about 32 Kilopoints. Long FFT’s can be built by
cascading smaller FFT’s connected by cornerturns.
A 1 G-point FFT, for example, can be formed with
two 32 K-point FFT’s. Lincoln has developed a
cornerturn architecture that can process a 1 G-point
FFT at 1 GSPS.

3 Software Technology

pMatlab is widely used at Lincoln for
implementing computationally intensive applications.
pMatlab XVM extends the parallel processing
capabilities of pMatlab with out-of-core methods.
pMatlab XVM uses hierarchical global arrays to
structure and swap data between memory and disk
storage in a manner that is optimal for a particular
algorithm, hiding the large amount of index
bookkeeping required to implement out-of-core
algorithms. Hence, applications can use all available
disk storage as memory to accommodate extremely
large data sets while leveraging the power of multiple
processors, with little sacrifice in performance.

DARPA’s High Productivity Computing
Systems (HPCS) program [4] has created the
HPCchallenge benchmark suite [5] in an effort to
redefine how productivity is measured in the HPC
domain. We have applied pMatlab XVM to the
HPCchallenge FFT benchmark. The benchmark was
implemented using MATLAB, pMatlab, C+MPI, and
pMatlab XVM.

The results show that the pMatlab XVM version
of the benchmark is easy to write and understand and
incurs a relatively small performance overhead while
performing a 64 Gigapoint FFT. Figure 3 compares
the performance of the various versions of the FFT
benchmark. These results show that pMatlab XVM:

• Provides 80% of pMatlab’s performance for
a specific size and number of CPUs

• Is able to increase problem size with minor
degradation in performance, and

• Allows all available local disk storage to be
used, enabling a 1 TB (64 Gigapoint) FFT.

4 Summary

Modern sensors are capable of collecting data at
high rates. The increased data rates and sizes present
challenges to the capabilities of existing hardware
technologies. Lincoln has been developing
innovative hardware technologies to meet the
requirements of real-time FFT’s.

Software technologies such as pMatlab XVM
enable offline data processing of large data sets that
are beyond the capabilities of current hardware
systems. Lincoln has developed an FFT
implemented with pMatlab XVM for a DoD
application that requires a 1 G-point FFT.

The inherent flexibility of these software
technologies also enables proof-of-concept
demonstrations for large-scale FFT algorithms. For
example, pMatlab XVM will allow analysts and
systems designers to experiment with various FFT
design parameters (e.g. fixed-point vs. floating-point,
dynamic range, etc.) before implementing the design
in hardware to perform in real-time. pMatlab XVM
also enables analysis of the overall system, allowing
analysts to also determine how the FFT operation
affects the overall signal processing chain.

References
[1] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M.

Rader, and M. M. Vai, “A Systolic FFT
Architecture for Real Time FPGA Systems,”
High Performance Embedded Computing
(HPEC) Workshop 2004, September 2004.

[2] J. Kepner, N. Travinin, “Parallel MATLAB:
The Next Generation,” High Performance
Embedded Computing (HPEC) Workshop
2003, September 2003.

[3] R. Haney, A. Funk, J. Kepner, H. Kim, C.
Rader, A. Reuther, N. Travinin, “pMatlab
Takes the HPCchallenge,” High Performance
Embedded Computing (HPEC) Workshop
2004, September 2004.

[4] HPCS – High Productivity Computer
Systems, http://www.highproductivity.org.

[5] HPCchallenge, http://icl.cs.utk.edu/hpcc.

