
MIT Lincoln Laboratory

A Relative Development Time
Productivity Metric for HPC Systems

Andrew Funk, Jeremy Kepner Victor Basili, Lorin Hochstein
MIT Lincoln Laboratory University of Maryland

Ninth Annual Workshop on
High Performance Embedded Computing

MIT Lincoln Laboratory
Lexington, MA

20 - 22 September 2005

This work is sponsored by Defense Advanced Research Projects Administration, under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Slide-2
Relative Development Time Productivity

MIT Lincoln Laboratory

• General Productivity Formula

• Relative Development Time
Productivity Metric

• Experiments

Outline

• Overview

• Analysis

• Summary

Slide-3
Relative Development Time Productivity

MIT Lincoln Laboratory

High Productivity Computing
Systems

Goal:
Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national
security applications by a factor of 10X to 40X
Programmability (idea-to-first-solution): reduce cost and
time of developing application solutions
Portability (transparency): insulate research and
operational application software from system
Robustness (reliability): apply all known techniques to
protect against outside attacks, hardware faults, &
programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant
modeling and biotechnology

HPCS Program Focus Areas

Slide-4
Relative Development Time Productivity

MIT Lincoln Laboratory

Evaluating Productivity

Reliability

Portability Dev Time
Experiments

Exe Time
Experiments

Productivity
Metrics

System Parameters
(Examples)

BW bytes/flop (Balance)
Memory latency

Memory size
……..

Productivity

Processor flop/cycle
Processor integer op/cycle

Bisection BW
………

Size (ft3)
Power/rack

Facility operation
……….

Code size
Restart time (Reliability) Code

Optimization time
………

Benchmarks
Kernel, Compact & Full

Actual
System

or
Model

Work
Flows (Utility/Cost)

C
om

m
on

 M
od

el
in

g
In

te
rf

ac
e

Dev Interface
Exe Interface

• Unique combined focus from the beginning on:
– Designing petascale systems for a broad range of missions
– Improving the usability of such systems

• Developing a methodology for measuring these improvements is the
focus of the Productivity Team

• Unique combined focus from the beginning on:
– Designing petascale systems for a broad range of missions
– Improving the usability of such systems

• Developing a methodology for measuring these improvements is the
focus of the Productivity Team

Slide-5
Relative Development Time Productivity

MIT Lincoln Laboratory

Measuring Productivity

• HPC and HPEC communities have experience measuring execution
performance

• Software development is often the dominant cost driver associated with
developing DoD High Performance Embedded Computing (HPEC) Systems

• Need metrics that incorporate both execution performance and software
development cost for HPC and HPEC systems

$0.0

$1.0

$2.0

$3.0

FY98
FY99
FY00
FY01
FY02
FY03
FY04
FY05

Software
Hardware

B
ill

io
ns

Source: HPEC
market study, 2001

Slide-6
Relative Development Time Productivity

MIT Lincoln Laboratory

Utility is value user
places on getting a
result at time T

General Productivity Formula

SOM C+C+C
U(T)

C
U =≡Ψ

Utility Function

Time

U U = A/t

Software costs include
time spent by users
developing their codes

Developing small
codes (~1000 lines)

Overall
system cost

Overall system
productivity

Operating costs
include admin
time, electric and
building costs

Machine cost

Slide-7
Relative Development Time Productivity

MIT Lincoln Laboratory

Relative Development Time
Productivity Metric (Small Codes)

• Speedup is major concern

• Operating and machine costs not seen

Effort Relative
Speedup

relativeΨ =

code writingofCost
ePerformanc nApplicatio

codes smallΨ =

• Relative code size used for relative effort

Slide-8
Relative Development Time Productivity

MIT Lincoln Laboratory

Experiments

• The Relative Development Time Productivity metric (Ψrelative) was
applied to:

– NAS Parallel Benchmarks (NASA)
 8 kernels and pseudo-apps from Computational Fluid Dynamics (CFD)

 C/Fortran, MPI, OpenMP, Java, High Performance Fortran (HPF)

– HPC Challenge (University of Tennessee)
 High Performance Linpack (HPL, Top500), FFT, Stream, Random Access

 Serial C and C+MPI, Serial and parallel high level language (Matlab)

– Classroom assignments (University of Maryland)
 Various textbook parallel programming exercises

 Serial C and Matlab, MPI, OpenMP, Matlab*p

Slide-9
Relative Development Time Productivity

MIT Lincoln Laboratory

Studies are national in scope

University studies Case studies or Interviews

Vendor interaction In progress/Completed

Planned

UCSB
2 studies
5 assignments

USC
2 studies
2
assignments

Caltech
U IllinoisU Utah

U Hawaii

UCSD
1 study
1 assignment

MIT
2 studies
5 assignments

UMD
4 studies
8 assignments

Mississippi State
1 study
1 assignment

LLABs

ERDC

UNM

UMD

U Delaware

U Vanderbilt

Slide-10
Relative Development Time Productivity

MIT Lincoln Laboratory

Programming Models and Languages

Programming Languages StudiedMemory Model / Architecture
C/C++

Fortran

Java

Matlab

Serial
CPU

Memory

C/Fortran + OpenMP

Multithreaded Java

High Performance Fortran (HPF)

Co-Array Fortran (CAF)

ZPL

Shared

Memory
CPU

Memory

High Speed Interconnect

CPU CPU CPU

C/Fortran + MPI

Matlab*P

pMatlab

Distributed

Memory
CPU

M

High Speed Interconnect

CPU

M

CPU

M

CPU

M

Slide-11
Relative Development Time Productivity

MIT Lincoln Laboratory

• NAS Parallel Benchmarks

• HPC Challenge

• Classroom Assignments

Outline

• Overview

• Analysis

• Summary

Slide-12
Relative Development Time Productivity

MIT Lincoln Laboratory

The NAS Parallel Benchmarks

2,120
863

2,554
450
560
141
574

2,528

Code
size*

DescriptionBenchmark

Scalar Pentadiagonal solution to Navier-Stokes equationsSP app
A simple 3D Multi-Grid benchmarkMG
Lower and Upper triangular solution to Navier-Stokes equationsLU app
Parallel Sort over small IntegersIS
A 3-D fast-Fourier Transform partial differential equation benchmarkFT
Embarrassingly Parallel random number generationEP
Solving unstructured sparse linear system by Conjugate Gradient methodCG

Block Tridiagonal solution to 3D compressible Navier-Stokes equationsBT app

The NAS Parallel Benchmarks (NPB) are a set of 8 programs designed to
help evaluate the performance of parallel supercomputers. The benchmarks,
which are derived from computational fluid dynamics (CFD) applications,
consist of five kernels and three pseudo-applications

* measured in Source Lines of Code (SLOC)

http://www.nas.nasa.gov/Software/NPB/

Slide-13
Relative Development Time Productivity

MIT Lincoln Laboratory

Speedup vs Relative Code Size

EP

FT

LU
CG

IS MG

SP
BT

IS
BT

CGMG
LU

FTEP

LU
BT
FT

SP
MGCGIS

FT

EP

MG

0.1

1

10

0.1 1 10
Relative Code Size

Sp
ee

du
p

NAS Parallel Benchmarks

Platform: IBM p655
(4x1.1 GHz Power4)

ideal speedup = 4

These results indicate OpenMP is more productive than other approaches
for small numbers of CPUs in a shared memory architecture

Ψrelative vs Benchmark

0.1

1

10

Ψ
re

la
tiv

e

Fortran/C + MPI 1.05 2.12 2.42 1.03 1.78 2.72 1.54 1.34

Fortran/C + OpenMP 1.87 3.42 3.76 3.02 1.87 3.47 3.68

Java 0.63 1.56 0.68 2.00 0.49 0.96 0.74

Serial Matlab 0.88 0.66

ZPL 9.989

BT CG EP FT IS LU MG SP

http://www.nas.nasa.gov/Software/NPB/

Slide-14
Relative Development Time Productivity

MIT Lincoln Laboratory

Speedup vs Relative Code Size

CG

MG

LU

SP

LU

CG

MGSP
LU

CG

SP
MG

0.1

1

10

100

0.1 1 10

Relative Code Size

Sp
ee

du
p

NAS Parallel Benchmarks

Platform: SGI
Altix 3000

Ψrelative vs Benchmark

0.1

1

10

100

Ψ
re

la
tiv

e
MPI 21.06 27.69 44.55 11.41

OpenMP 7.39 18.28 17.59 1.73

CAF 19.99 25.80 42.87 9.36

MG SP LU CG

These results show that for larger systems MPI and Co-Array Fortran
(CAF) scale well

ideal speedup = 64

http://www.nas.nasa.gov/Software/NPB/

Slide-15
Relative Development Time Productivity

MIT Lincoln Laboratory

Speedup vs Relative Code Size

SP
LU BT

BTLU
SP

0.1

1

10

100

0.1 1 10
Relative Code Size

Sp
ee

du
p

NAS Parallel Benchmarks

Platform: Lemieux
Alpha Cluster at PSC

Ψrelative vs Benchmark

0.1

1

10

100

Ψ
re

la
tiv

e

MPI 37.34 42.87 47.36

dHPF 49.37 39.98 42.36

SP BT LU

MPI and dHPF (High Performance Fortran) exhibit similar Ψrelative, which can
be achieved either by increasing performance or by reducing effort

ideal speedup = 64

http://www.nas.nasa.gov/Software/NPB/

Slide-16
Relative Development Time Productivity

MIT Lincoln Laboratory

• NAS Parallel Benchmarks

• HPC Challenge

• Classroom Assignments

Outline

• Overview

• Analysis

• Summary

Slide-17
Relative Development Time Productivity

MIT Lincoln Laboratory

HPC Challenge Benchmark Memory
Access Characteristics

Top500 Linpack
(Matrix Multiply)

Large FFTs
(Corner -turn)

STREAM
(Vector Operations)

RandomAccess
(Detection)

High
High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

• The HPC Challenge benchmark suite bounds computations of high and
low spatial and temporal locality

• Available for download at www.HighProductivity.org

Try it on your favorite system

• The HPC Challenge benchmark suite bounds computations of high and
low spatial and temporal locality

• Available for download at www.HighProductivity.org

Try it on your favorite system

Slide-18
Relative Development Time Productivity

MIT Lincoln Laboratory

HPC Challenge

RandomAccess v0.5

1E-7
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0

1 2 4 8 16 32 64 64x2
CPUs

pMatlab
C/MPI

FFT

0.01

0.1

1

10

1 2 4 8 16 32 64 64x2
CPUs

pMatlab
C/MPI

Performance of C+MPI and pMatlab is comparable

E
xe

cu
tio

n
P

er
fo

rm
an

ce

(“
G

U
P

S
”)

E
xe

cu
tio

n
P

er
fo

rm
an

ce

(G
FL

O
P

S
)

HPL

0.1

1

10

100

1000

1 2 4 8 16 32 64 64x2

CPUs

pMatlab
C/MPI

E
xe

cu
tio

n
P

er
fo

rm
an

ce

(G
FL

O
P

S
)

Stream

0.1

1

10

100

1000

1 2 4 8 16 32 64 64x2
CPUs

pMatlab Copy
pMatlab Scale
pMatlab Add
pMatlab Triad
C/MPI Copy
C/MPI Scale
C/MPI Add
C/MPI TriadE

xe
cu

tio
n

P
er

fo
rm

an
ce

(G

B
/s

)

http://icl.cs.utk.edu/hpcc/

Slide-19
Relative Development Time Productivity

MIT Lincoln Laboratory

Speedup vs Relative Code Size

RA

FFT

Stream HPL

RA

FFT
HPL Stream

RA

HPL

Stream

FFT

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10

Relative Code Size

Sp
ee

du
p

Ψrelative vs Benchmark

0.001

0.01

0.1

1

10

100

1000

Ψ
re

la
tiv

e
C + MPI 45.04 4.44 1.91 0.00
Serial Matlab 7.68 47.99 33.94 0.01
pMatlab 465.36 355.56 5.56 0.00

Stream FFT HPL Random
Access

HPC Challenge

Platform: Linux cluster
64 dual 2.8 GHz Xeon nodes

ideal speedup = 128

• For some benchmarks pMatlab has higher Ψrelative
• Note: Scaled speedup – using largest problem size that fits in memory

http://icl.cs.utk.edu/hpcc/

Slide-20
Relative Development Time Productivity

MIT Lincoln Laboratory

• NAS Parallel Benchmarks

• HPC Challenge

• Classroom Assignments

Outline

• Overview

• Analysis

• Summary

Slide-21
Relative Development Time Productivity

MIT Lincoln Laboratory

Classroom Experiments

11Create serial and parallel versions using C and MPIGame of LifeP1A1

8Create serial and parallel versions using C, MPI,
OpenMP

Game of LifeP3A3
13Create serial and parallel versions using C and StarPParallel SortingP3A2

17Create serial versions using C and Matlab, and parallel
versions using MPI, OpenMP, and StarP

Buffon-Laplace
Needle

P3A1

11Create serial versions using C and Matlab, and parallel
versions using MPI, OpenMP, and StarP

Grid of ResistorsP2A2

11Create serial versions using C and Matlab, and parallel
versions using MPI, OpenMP, and StarP

Buffon-Laplace
Needle

P2A1

17Add OpenMP directives to existing serial Fortran codeWeather SimP0A2
16Create serial and parallel versions using C and MPIGame of LifeP0A1

Students
reporting

AssignmentProblemClass

• 4 classes, 8 assignments, 104 student submissions

Slide-22
Relative Development Time Productivity

MIT Lincoln Laboratory

Classroom Data Summary

As with NPB, these results indicate OpenMP is more productive than other
approaches for small numbers of CPUs in a shared memory architecture

Median Ψrelative vs Benchmark

0.1

1

10

M
ed

ia
n
Ψ

re
la

tiv
e

MPI 2.16 1.34 0.94 0.57
OpenMP 6 0.032 0.03 12.54
StarP 0.440

P0A2 P1A1 P2A1 P3A1 P3A3

P3A3
P2A1

P3A1

P1A1

P0A2
P3A3

P2A1

0.1

1

10

0.1 1 10
Median Relative Code Size

M
ed

ia
n

Sp
ee

du
p ideal speedup = 8

Median Speedup vs Relative Code Size

Slide-23
Relative Development Time Productivity

MIT Lincoln Laboratory

Summary

0.1

1

10

100

1000

0.1 1 10
Relative Effort

Sp
ee

du
p

Standard
HPCHPCS?

Java, Matlab,
Python, …

“All too often”

• Established a common metric, Ψrelative, for
analyzing productivity of parallel software
development

• Applied metric to data, with results consistent
across benchmarks and class assignments

• Technique will enable evaluating productivity
of programming models for new HPC and
HPEC systems

• Ψrelative metric, along with hardware
performance and other factors, will give a
more complete picture of overall system
productivity

Wednesday, 21 September - Session 3: Advanced Parallel Environments
• X10 Programming, Vivek Sarkar, IBM

• MathWorks Recent and Future Solutions for High Productivity, Roy Lurie and Cleve Moler, MathWorks

• Advanced Hardware and Software Technologies for Ultra-long FFTs, Hahn Kim et. al., MIT Lincoln Laboratory

• An Interactive Approach to Parallel Combinatorial Algorithms with Star-P, John Gilbert, UCSB, et. al.

Slide-24
Relative Development Time Productivity

MIT Lincoln Laboratory

References

• High Productivity Computer Systems http://www.HighProductivity.org

• Kepner, J. “HPC Productivity Model Synthesis.” IJHPCA Special Issue on HPC Productivity,
Vol. 18, No. 4, SAGE 2004

• Humphrey, W. S. A Discipline for Software Engineering. Addison-Wesley, USA, 1995

• Boehm, A. Constructive Cost Model (COCOMO). http://sunset.usc.edu/research/COCOMOII/

• NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/

• ZPL. http://www.cs.washington.edu/research/zpl/home/

• Wheeler, D. SLOCcount. http://www.dwheeler.com/sloccount/

• HPC Challenge. http://icl.cs.utk.edu/hpcc/

• Haney, R. et. al. “pMatlab Takes the HPC Challenge.” Poster presented at High Performance
Embedded Computing (HPEC) workshop, Lexington, MA. 28-30 Sept. 2004

• Choy, R. and Edelman, A. MATLAB*P 2.0: A unified parallel MATLAB. MIT DSpace, Computer
Science collection, Jan. 2003. http://hdl.handle.net/1721.1/3687

We wish to thank all of the professors whose students participated in
this study, including Jeff Hollingsworth, Alan Sussman, and Uzi
Vishkin of the University of Maryland, Alan Edelman of MIT, John
Gilbert of UCSB, Mary Hall of USC, and Allan Snavely of UCSD.

