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High Productivity Computing 
Systems

Goal:
Provide a new generation of economically viable high productivity computing 
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national 
security applications by a factor of 10X to 40X
Programmability (idea-to-first-solution): reduce cost and 
time of developing application solutions 
Portability (transparency): insulate research and 
operational application software from system
Robustness (reliability): apply all known techniques to 
protect against outside attacks, hardware faults, & 
programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant 
modeling and biotechnology

HPCS Program Focus Areas
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Evaluating Productivity
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• Unique combined focus from the beginning on:
– Designing petascale systems for a broad range of missions
– Improving the usability of such systems

• Developing a methodology for measuring these improvements is the
focus of the Productivity Team

• Unique combined focus from the beginning on:
– Designing petascale systems for a broad range of missions
– Improving the usability of such systems

• Developing a methodology for measuring these improvements is the
focus of the Productivity Team
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Measuring Productivity

• HPC and HPEC communities have experience measuring execution 
performance

• Software development is often the dominant cost driver associated with 
developing DoD High Performance Embedded Computing (HPEC) Systems

• Need metrics that incorporate both execution performance and software 
development cost for HPC and HPEC systems
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Source: HPEC 
market study, 2001
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Utility is value user 
places on getting a 
result at time T

General Productivity Formula

SOM C+C+C
U(T)

C
U =≡Ψ

Utility Function

Time

U U = A/t

Software costs include 
time spent by users 
developing their codes

Developing small 
codes (~1000 lines)

Overall 
system cost

Overall system 
productivity

Operating costs 
include admin 
time, electric and 
building costs

Machine cost
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Relative Development Time 
Productivity Metric (Small Codes)

• Speedup is major concern

• Operating and machine costs not seen

Effort Relative
Speedup

relativeΨ =

code  writingofCost 
ePerformanc nApplicatio

codes smallΨ =

• Relative code size used for relative effort
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Experiments

• The Relative Development Time Productivity metric (Ψrelative) was 
applied to:

– NAS Parallel Benchmarks (NASA)
 8 kernels and pseudo-apps from Computational Fluid Dynamics (CFD)

 C/Fortran, MPI, OpenMP, Java, High Performance Fortran (HPF)

– HPC Challenge (University of Tennessee)
 High Performance Linpack (HPL, Top500), FFT, Stream, Random Access

 Serial C and C+MPI, Serial and parallel high level language (Matlab)

– Classroom assignments (University of Maryland)
 Various textbook parallel programming exercises

 Serial C and Matlab, MPI, OpenMP, Matlab*p
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Studies are national in scope

University studies     Case studies or Interviews

Vendor interaction             In progress/Completed              

Planned

UCSB
2 studies
5 assignments

USC
2 studies
2 
assignments

Caltech
U IllinoisU Utah

U Hawaii

UCSD
1 study
1 assignment

MIT
2 studies
5 assignments

UMD
4 studies
8 assignments

Mississippi State
1 study
1 assignment

LLABs

ERDC

UNM

UMD

U Delaware

U Vanderbilt
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Programming Models and Languages 

Programming Languages StudiedMemory Model / Architecture
C/C++

Fortran

Java

Matlab

Serial
CPU

Memory

C/Fortran + OpenMP

Multithreaded Java

High Performance Fortran (HPF)

Co-Array Fortran (CAF)

ZPL

Shared 

Memory
CPU

Memory

High Speed Interconnect

CPU CPU CPU

C/Fortran + MPI

Matlab*P

pMatlab

Distributed 

Memory
CPU

M

High Speed Interconnect

CPU

M

CPU

M

CPU

M
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• NAS Parallel Benchmarks

• HPC Challenge

• Classroom Assignments
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• Overview
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• Summary
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The NAS Parallel Benchmarks

2,120
863

2,554
450
560
141
574

2,528

Code 
size*

DescriptionBenchmark

Scalar Pentadiagonal solution to Navier-Stokes equationsSP app
A simple 3D Multi-Grid benchmarkMG
Lower and Upper triangular solution to Navier-Stokes equationsLU app
Parallel Sort over small IntegersIS
A 3-D fast-Fourier Transform partial differential equation benchmarkFT
Embarrassingly Parallel random number generationEP
Solving unstructured sparse linear system by Conjugate Gradient methodCG

Block Tridiagonal solution to 3D compressible Navier-Stokes equationsBT app

The NAS Parallel Benchmarks (NPB) are a set of 8 programs designed to 
help evaluate the performance of parallel supercomputers. The benchmarks, 
which are derived from computational fluid dynamics (CFD) applications, 
consist of five kernels and three pseudo-applications

* measured in Source Lines of Code (SLOC)

http://www.nas.nasa.gov/Software/NPB/
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Speedup vs Relative Code Size
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NAS Parallel Benchmarks

Platform: IBM p655 
(4x1.1 GHz Power4)

ideal speedup = 4

These results indicate OpenMP is more productive than other approaches 
for small numbers of CPUs in a shared memory architecture

Ψrelative vs Benchmark
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Fortran/C + MPI  1.05  2.12  2.42  1.03  1.78  2.72  1.54  1.34 

Fortran/C + OpenMP  1.87  3.42  3.76  3.02  1.87  3.47  3.68 

Java  0.63  1.56  0.68  2.00  0.49  0.96  0.74 

Serial Matlab  0.88  0.66 

ZPL 9.989

BT CG EP FT IS LU MG SP

http://www.nas.nasa.gov/Software/NPB/
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Speedup vs Relative Code Size
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Platform: SGI 
Altix 3000

Ψrelative vs Benchmark
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MPI 21.06 27.69 44.55 11.41

OpenMP 7.39 18.28 17.59 1.73

CAF 19.99 25.80 42.87 9.36

MG SP LU CG

These results show that for larger systems MPI and Co-Array Fortran 
(CAF) scale well

ideal speedup = 64

http://www.nas.nasa.gov/Software/NPB/
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Speedup vs Relative Code Size
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Platform: Lemieux
Alpha Cluster at PSC

Ψrelative vs Benchmark
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MPI 37.34 42.87 47.36

dHPF 49.37 39.98 42.36

SP BT LU

MPI and dHPF (High Performance Fortran) exhibit similar Ψrelative, which can 
be achieved either by increasing performance or by reducing effort

ideal speedup = 64

http://www.nas.nasa.gov/Software/NPB/
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• HPC Challenge
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HPC Challenge Benchmark Memory 
Access Characteristics

 

Top500 Linpack  
(Matrix Multiply)  
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STREAM  
(Vector Operations)
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Temporal Locality  

• The HPC Challenge benchmark suite bounds computations of high and 
low spatial and temporal locality

• Available for download at www.HighProductivity.org

Try it on your favorite system

• The HPC Challenge benchmark suite bounds computations of high and 
low spatial and temporal locality

• Available for download at www.HighProductivity.org

Try it on your favorite system
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HPC Challenge

RandomAccess v0.5
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http://icl.cs.utk.edu/hpcc/
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Speedup vs Relative Code Size
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C + MPI 45.04 4.44 1.91 0.00
Serial Matlab 7.68 47.99 33.94 0.01
pMatlab 465.36 355.56 5.56 0.00

Stream FFT HPL Random 
Access

HPC Challenge

Platform: Linux cluster
64 dual 2.8 GHz Xeon nodes

ideal speedup = 128

• For some benchmarks pMatlab has higher Ψrelative
• Note: Scaled speedup – using largest problem size that fits in memory

http://icl.cs.utk.edu/hpcc/
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• NAS Parallel Benchmarks

• HPC Challenge

• Classroom Assignments
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Classroom Experiments

11Create serial and parallel versions using C and MPIGame of LifeP1A1

8Create serial and parallel versions using C, MPI, 
OpenMP

Game of LifeP3A3
13Create serial and parallel versions using C and StarPParallel SortingP3A2

17Create serial versions using C and Matlab, and parallel 
versions using MPI, OpenMP, and StarP

Buffon-Laplace
Needle

P3A1

11Create serial versions using C and Matlab, and parallel 
versions using MPI, OpenMP, and StarP

Grid of ResistorsP2A2

11Create serial versions using C and Matlab, and parallel 
versions using MPI, OpenMP, and StarP

Buffon-Laplace
Needle

P2A1

17Add OpenMP directives to existing serial Fortran codeWeather SimP0A2
16Create serial and parallel versions using C and MPIGame of LifeP0A1

Students 
reporting

AssignmentProblemClass

• 4 classes, 8 assignments, 104 student submissions
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Classroom Data Summary

As with NPB, these results indicate OpenMP is more productive than other 
approaches for small numbers of CPUs in a shared memory architecture

Median Ψrelative vs Benchmark
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MPI 2.16 1.34 0.94 0.57
OpenMP 6 0.032 0.03 12.54
StarP  0.440 
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Median Speedup vs Relative Code Size
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Summary
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Standard
HPCHPCS?

Java, Matlab,
Python, …

“All too often”

• Established a common metric, Ψrelative, for 
analyzing productivity of parallel software 
development

• Applied metric to data, with results consistent 
across benchmarks and class assignments

• Technique will enable evaluating productivity 
of programming models for new HPC and 
HPEC systems

• Ψrelative metric, along with hardware 
performance and other factors, will give a 
more complete picture of overall system 
productivity

Wednesday, 21 September - Session 3: Advanced Parallel Environments
• X10 Programming, Vivek Sarkar, IBM

• MathWorks Recent and Future Solutions for High Productivity, Roy Lurie and Cleve Moler, MathWorks

• Advanced Hardware and Software Technologies for Ultra-long FFTs, Hahn Kim et. al., MIT Lincoln Laboratory

• An Interactive Approach to Parallel Combinatorial Algorithms with Star-P, John Gilbert, UCSB, et. al.
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