
A Relative Development Time Productivity Metric for HPC Systems
Andrew Funk and Jeremy Kepner

MIT Lincoln Laboratory
{afunk, kepner} @ ll.mit.edu

Victor Basili and Lorin Hochstein
University of Maryland

{basili, lorin} @ cs.umd.edu

Abstract1

Software is often the dominant cost associated with
developing DoD High Performance Embedded Computing
(HPEC) systems. Historically there has been no
quantifiable methodology for comparing the difficulty of
developing code on different HPEC systems and trading off
ease of development vs. execution performance. The
DARPA High Productivity Computing Systems (HPCS)
program is developing methodologies for the High
Performance Computing (HPC) community, which may
also be applicable to the HPEC community. This paper
presents early results of one approach for measuring the
relative development time productivity of different parallel
programming environments. This metric, defined as the
ratio of relative execution performance to relative
programmer effort, has been used to analyze several HPC
benchmark codes and classroom programming assignments.
The results of this analysis show consistent trends for
various programming models. This approach enables a
high-level evaluation of relative development time
productivity for a given programming model, which is
essential to the task of estimating software development
cost for HPC and HPEC systems.

Introduction
Software is often the dominant cost associated with
developing HPEC systems, but historically there has been
no method of quantifying and comparing the difficulty of
developing code on different systems, or for weighing ease
of development against execution performance. The HPCS
program [1] is developing methods of quantifying the
productivity of HPC systems, and these methods may also
apply to HPEC systems. In the HPCS program, overall
HPC system productivity, Ψ, has been defined as utility
over cost:

MCOCSC
TU
++

=Ψ
)([2]

The utility of the solution, U(T), is a (generally decreasing)
function of time, and the denominator of the formula is a
sum of software (CS), operation (CO), and machine (CM)
costs. In the special case of a lone researcher or team
developing small codes (possibly for HPEC systems), we
measure utility in terms of how fast the code runs, and
assume we are only concerned with the cost, or effort

This work is sponsored by Defense Advanced Research Projects
Agency, under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author
and are not necessarily endorsed by the United States Government.

required, to develop the code (CS). If we then normalize the
parallel performance and cost with respect to those of a
corresponding serial code, we arrive at a formula for
relative development time productivity:

Effort Relative
Speedup

tyProductivi Time
tDevelopmen Relative
=

For the analyses in this paper, relative effort is calculated as
the ratio of parallel to serial code size. To test this metric,
we have applied it to two HPC benchmark suites. The HPC
Challenge suite [3] consists of several activity-based
benchmarks designed to test various aspects of a computing
platform. The four benchmarks used in this study were
FFT (v0.6a), High Performance Linpack (HPL, v0.6a),
RandomAccess (v0.5b), and Stream (v0.6a). The NAS
Parallel Benchmark (NPB) [4] suite consists of five kernel
benchmarks and three pseudo-applications from the field of
computational fluid dynamics. In addition, we have applied
this metric to data collected from a series of classroom
parallel programming assignments.

Analysis and Results
The HPC Challenge benchmarks were run on 64 dual-
processor nodes connected by Gigabit Ethernet [5]. To
compare low- and high-level languages, each benchmark
was implemented in serial C, C+MPI, Matlab, and pMatlab.
The execution time of each implementation was measured
and normalized with respect to serial C to compute
speedup. Similarly, the relative effort required for each
implementation was computed by normalizing its size,
measured in Source Lines of Code (SLOC), with respect to
serial C. The relative development time productivity for
each implementation was then calculated by dividing
speedup by relative effort.
 The results for the HPC Challenge benchmarks are
presented in the first column of Figure 1. (The
implementations of Random Access require a great deal of
inter-processor communication, and so actually run slower
as more processors are involved in a network cluster.) With
the exception of Random Access, the MPI implementations
all fall into the upper-right quadrant of the top graph,
indicating that they deliver some level of parallel speedup,
while requiring larger code sizes relative to serial C. As
expected, the serial Matlab implementations do not deliver
any speedup, but do all have smaller relative code sizes.
The pMatlab implementations (except Random Access) fall
into the upper-left quadrant of the graph, delivering parallel
speedup while requiring smaller relative code size. The

HPC Challenge

RA

FFTHPL Stream

RA

FFT

HPL

L

RA

FFT

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100
Relative Code Size

Sp
ee

du
p

Stream
Stream HP

Serial Matlab
pMatlab
C+MPI

NPB

0.1

1

10

0.1 1 10
Relative Code Size

Sp
ee

du
p

MPI
OpenMP
Java
Serial Matlab
ZPL

Classroom

P3A3
P2A1

P3A1

P1A1

P0A2
P3A3

P2A1

0.1

1

10

0.1 1 10Relative Code Size

Sp
ee

du
p

MPI
OpenMP
StarP

0.0001

0.001

0.01

0.1

1

10

100

1000

St
re

am FF
T

H
PL

R
an

do
m

A
cc

es
s

Benchmark

Pr
od

uc
tiv

ity

Serial Matlab
C+MPI
pMatlab

0.1

1

10

BT CG EP FT IS LU MG SP
Benchmark

Pr
od

uc
tiv

ity

Fortran/C + MPI
Fortran/C + OpenMP
Java
Serial Matlab
ZPL

0.1

1

10

P0A
2

P1A
1

P2A
1

P3A
1

P3A
3

Assignment

Pr
od

uc
tiv

ity

MPI
OpenMP
StarP

Ideal speedup = 8 Ideal speedup = 128 Ideal speedup = 4

Figure 1: Top row: Speedup vs. Relative Code Size. Bottom row: Relative Development Time Productivity

combination of parallel speedup and reduced relative code
size means that the pMatlab implementations generally
have the highest relative development time productivity
values of the three (Figure 1, bottom left).
 The NPB codes were run on an IBM p655 multiprocessor
computer using the Class A problem size and four
processors (in the parallel case). The speedup, relative code
size, and relative development time productivity were
calculated in the same manner as for HPC Challenge. The
results for NPB are shown in the middle column of Figure
1. These results show that OpenMP tends to have speedup
comparable to MPI, with a smaller relative code size
(Figure 1, top center). This is reflected in the higher
relative development time productivity values for OpenMP
(Figure 1, bottom center). As a general rule, we expect to
see traditional parallel languages and libraries such as MPI
and OpenMP fall in the upper-right quadrant of the graph.
This reinforces our intuition that parallel performance is
achieved at the cost of additional effort (over serial
implementation).
 A series of classroom experiments was conducted for the
HPCS program, in which students from several different
classes were asked to produce parallel programming
solutions to a variety of textbook problems. In most cases
the students first created a serial program to solve the
problem, and this was used as the baseline for comparison
with their parallel solution. The students used C, Fortran,
and Matlab for their serial codes, and created parallel

versions using MPI, OpenMP, and Matlab*P (aka StarP, a
parallel extension to Matlab) [6]. The students ran their
programs on a variety of computing platforms, and reported
their own timings. All speedups were calculated using eight
processors for the parallel case. Relative code size and
relative development time productivity were calculated in
the same manner as with the benchmark codes.
 The results for the classroom assignments are presented
in the right column of Figure 1. The speedup and relative
code size were collected for each student, and the median
values for each assignment are plotted on the graph. The
ideal speedup in this case is eight. Some outlier data is not
shown, and error bars are one standard deviation from the
median. The MPI data points for the most part fall in the
upper-right quadrant of the graph, resulting in development
time productivity values at or above one (Figure 1, top
right). The OpenMP data points indicate a higher achieved
speedup compared to MPI, while also requiring fewer lines
of code. This yields higher relative development time
productivity values for OpenMP (Figure 1, bottom right).

Conclusions
We have introduced a common metric for measuring
relative development time productivity of HPC software.
This metric has been applied to data from benchmark codes
and classroom experiments, with consistent results. In
general the data supports the belief that MPI
implementations yield good speedup but have larger

relative code sizes than other implementations. OpenMP
generally provides speedup comparable to MPI, but with
smaller relative code size. This yields higher relative
development time productivity values. The pMatlab
implementations of HPC Challenge provide an example of
a language that can yield good speedup for some problems,
while requiring smaller relative code size, again leading to
higher values of the relative development time productivity
metric.

References
[1] High Productivity Computer Systems

http://www.HighProductivity.org

[2] Kepner, J. “HPC Productivity Model Synthesis.” IJHPCA
Special Issue on HPC Productivity, Vol. 18, No. 4, SAGE
2004

[3] HPC Challenge. http://icl.cs.utk.edu/hpcc/

[4] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/

[5] Haney, R. et. al. “pMatlab Takes the HPC Challenge.”
Poster presented at High Performance Embedded Computing
(HPEC) workshop, Lexington, MA. 28-30 Sept. 2004

[6] Choy, R. and Edelman, A. MATLAB*P 2.0: A unified
parallel MATLAB. MIT DSpace, Computer Science
collection, Jan. 2003. http://hdl.handle.net/1721.1/3687

[7] Funk, A., Basili, V., Hochstein, L., Kepner, J. “Application
of a Development Time Productivity Metric to Parallel
Software Development.” Second International Workshop on
Software Engineering for High Performance Computing
System Applications (SE-HPCS). St. Louis, MO. 15 May
2005.

