
pMatlab Takes the HPCchallenge

Ryan Haney, Hahn Kim, Andrew Funk, Jeremy Kepner, Charles Rader, Albert Reuther and Nadya Travinin
MIT Lincoln Laboratory, Lexington, MA 02420

Phone: 781-981-2514
Email Addresses: {haney, hgk, afunk, kepner, rader, reuther, nt}@ll.mit.edu

Abstract1
The HPCchallenge benchmark suite has been released by
the DARPA HPCS program to help define the
performance boundaries of future Petascale computing
systems. The suite is composed of several well known
computational kernels (STREAM, Top500, FFT, and
RandomAccess) that span high and low spatial and
temporal locality. These kernels also encompass key
aspects of embedded signal processing: vector
computations, matrix multiplies, corner turns and random
selection operations. MATLAB®2 is the primary high level
language used within the signal processing community and
is increasingly used for large system simulations and
quickly processing data in the field. The pMatlab parallel
MATLAB toolbox provides the necessary global array
semantics to allow HPCchallenge to be implemented. The
results provide a unique opportunity to probe both the
relative (pMatlab vs. MATLAB) and absolute (pMatlab vs.
C/Fortran+MPI) merits of pMatlab. Specifically, for each
kernel in HPCchallenge we examine code size, maximum
problem size, and performance. We find pMatlab code to
be approximately 10x smaller than the equivalent C/MPI
code. The problem sizes possible using pMatlab scale
linearly with the number of processors (e.g. we are able to
FFT a 228 complex vector on 16 CPUS), and are
comparable to the corresponding C/Fortran+MPI code.
Finally, the scalability of the kernels approaches that of the
C/Fortran+MPI code.

Introduction
The HPCchallenge
The DARPA High Productivity Computing Systems
(HPCS) program has initiated a fundamental reassessment
of how we define and measure performance,
programmability, portability, robustness and, ultimately,
productivity in the HPC domain [1]. With this in mind,
HPCchallenge is designed to approximately bound
computations of high and low spatial and temporal locality
for Petascale systems. Figure 1 illustrates the approximate
spatial/temporal relationship of the different kernels and
the connections to important operations in the embedded

signal processing community. In addition, because
HPCchallenge consists of simple mathematical operations,
this provides a unique opportunity to look at language and
parallel programming model issues. This paper compares
traditional C/Fortran+MPI with MATLAB using global
array semantics.

1 This work is sponsored by Defense Advanced Research Projects
Administration, under Air Force Contract F19628-00-C-0002.
Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the United
States Government.
2 MATLAB is a registered trademark of The Mathworks, Inc.

(Matrix Multiply)

(Corner-turn)

(Vector Operations)

(Detection)

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

Top500 Linpack

Large FFTs

STREAM

RandomAccess

Figure 1: HPCchallenge kernels are plotted relative to
spatial and temporal locality.

The pMatlab Parallel Toolbox
The pMatlab toolbox implements global array semantics in
MATLAB. pMatlab provides high-level parallel data
structures and functions without removing the fast
prototyping capability and ease of use for which MATLAB
is well known [2]. This is achieved by combining operator
and function overloading with the concept of parallel data
and task mapping to provide implicit data and
computational parallelism. pMatlab is currently being
used for simulating signal processing chains and for rapid
analysis of sensor data in the field. The implementation of
the HPCchallenge using pMatlab offers a means for more
detailed performance analysis of pMatlab.

Parallel Implementation
STREAM consists of four local operations performed on
distributed vectors: copy, scaling, addition, and scaling
with addition. All of these operations are important in
signal and image processing. The STREAM benchmark
requires no interprocessor communication and is
implemented using simple distributed matrices.
 RandomAccess is designed to measure the random
access capabilities of a computer system. This is
accomplished by effectively computing the histogram of a
random number generator, replacing the typical addition

mailto:nt}@ll.mit.edu

update with a bit level XOR operation. The ability to
randomly access data and perform logical operations are
standard “post detection” signal processing operations.
RandomAccess requires dynamic communications among
all the processors and is implemented using parallel sparse
arrays.
 The Top500 Linpack Benchmark uses an LU Solver to
solve a dense linear system of equations such as Ax=b.
Such an algorithm requires selecting and communicating
arbitrary parallel sub-matrices typical of many dense linear
algebra operations. At the core of LU are matrix-matrix
multiplies typical of multi-element beamforming
operations.
 The FFT kernel performs a 1-D Fast Fourier Transform.
The 1-D FFT is performed by computing two 2-D FFTs,
and then corner-turning the distributed matrix in between
the two computations. Both the local 2D FFTs and large
matrix corner turns are among the most important
operations in multi-sensor signal processing.

Results
For each kernel in the HPCchallenge, we examine code
size, maximum problem size, and performance on a Linux
cluster consisting of dual 3.0 GHz Xeon processors
connected with Gigabit Ethernet. Examining code size, we
find pMatlab code to be approximately 10x smaller than
the equivalent C/F77+MPI code. Approximate software
lines of code numbers for the HPCchallenge kernels are
shown in Table 1.
 The maximum problem sizes possible using pMatlab
scale linearly with the number of processors used and are
comparable to the corresponding C/F77+MPI code. Figure
2 illustrates this for the Top500 kernel. The maximum
input matrix size run on 16 processors (28K x 28K) is 16x
the maximum size that can be run on a single processor
(7K x 7K). Figure 3 shows the performance and
maximum problem size achieved in the pMatlab FFT code
relative to serial MATLAB, which uses FFTW [4] to
implement its Fourier Transform. The performance
scalability is typical of that seen in C/F77+MPI
implementation.

Table 1: C/Fortran + MPI vs. pMatlab software lines of
code for four of the HPCchallenge benchmarks.

0
1
2
3
4
5
6
7

0 4 8 12 16

pMatlab Top500 kernel

M
ax

 In
pu

t S
iz

e
(G

B
yt

es
)

Number of Processors
Figure 2: Maximum input matrix data sizes are plotted for
the Top500 kernel. Each matrix contained real double-
precision data.

0

1

2

3

0 4 8 12 16

pMatlab FFT1D

Parallel 1D Complex-to-Complex FFT

Number of Processors

R
el

at
iv

e
Pe

rf
or

m
an

ce

225
225

226 227 228

Figure 3: Performance (Flops) and scalability results are
plotted for the FFT kernel. Results are relative to the serial
MATLAB performance. Numbers next to the points indicate
the size of the complex vector used.

References
[1] HPCS - High Productivity Computer Systems.
http://www.highproductivity.org, 2004.
[2] Jeremy Kepner and Nadya Travinin. “Parallel
MATLAB: The Next Generation”. HPEC 2003 Workshop,
2003. C/F77+MPI /

pMatlab
Lines of

code
C/F77 +

MPI
pMatlab

[3] Jack Dongarra. “Performance of Various Computers
Using Standard Linear Equations Software”. University of
Tennessee, Knoxville TN.
http://www.netlib.org/benchmark/performance.ps, 2004.

~851441STREAM

~2101225Random
Access [4] FFTW Fastest Fourier Transform in the West.

http://www.fftw.org, 2004. ~1572~1100FFT

~5000 ~25200Top500

http://www.highproductivity.org/
http://www.netlib.org/benchmark/performance.ps
http://www.fftw.org/

	Abstract
	
	Introduction

