

LLGrid: On-Demand Grid Computing with gridMatlab and pMatlab

Albert Reuther

MIT Lincoln Laboratory

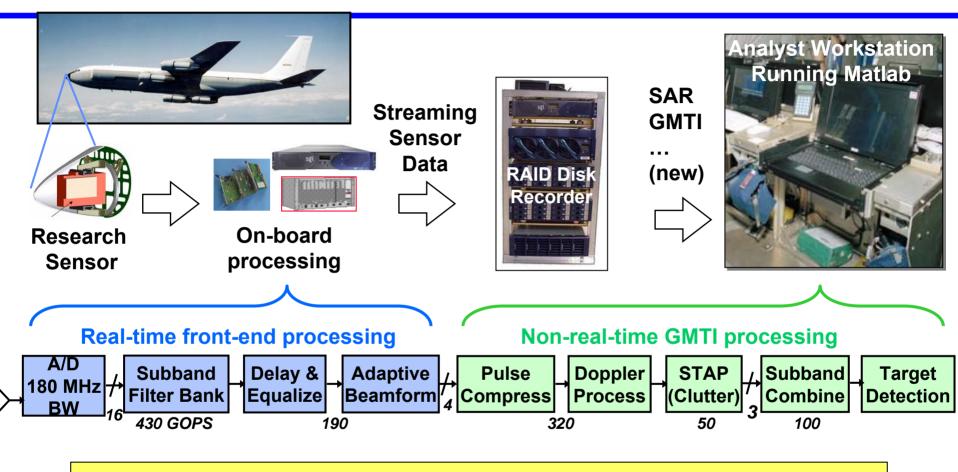
29 September 2004

This work is sponsored by the Department of the Air Force under Air Force contract F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

LLgrid-HPEC-04-1 AIR 29-Sep-04

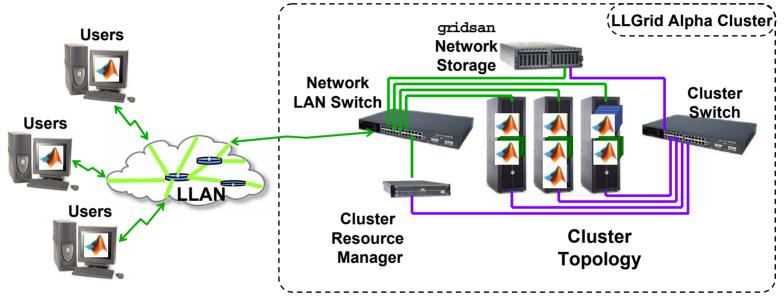
LLGrid On-Demand Grid Computing System Agenda


• Introduction

- LLGrid System
- Performance Results
- LLGrid Productivity Analysis
- Summary

- Example Application
- LLGrid Vision
- User Survey
- System Requirements

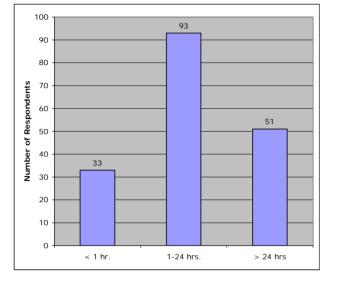
Example App: Prototype GMTI & SAR Signal Processing

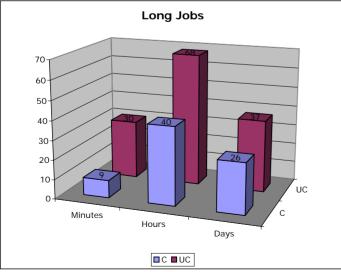


- Airborne research sensor data collected
- Research analysts develop signal processing algorithms in MATLAB[®] using collected sensor data
- Individual runs can last hours or days on single workstation

LLGrid

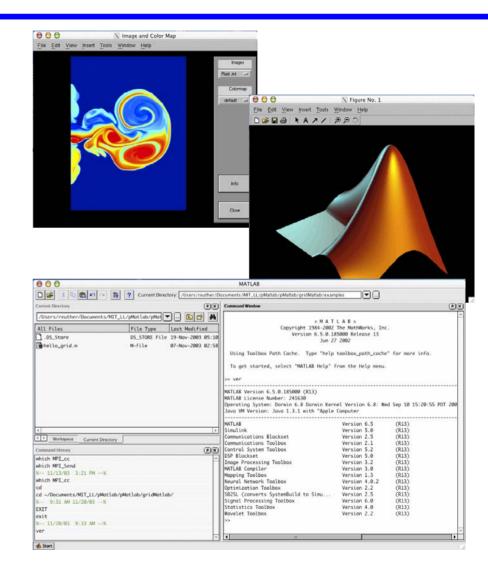
<u>Goal</u>: To develop a grid computing capability that makes it as easy to run parallel Matlab programs on grid as it is to run Matlab on own workstation.



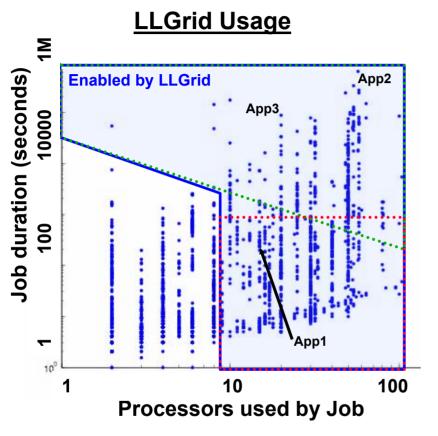

Lab Grid Computing Components

- Enterprise access to high throughput Grid computing
- Enterprise distributed storage

MATLAB® Users Survey



- Conducted survey of Lab staff
 - Do you run long MATLAB jobs?
 - How long do those jobs run (minutes, hours, or days)?
 - Are these jobs unclassified, classified, or both?
- Survey results:
 - 464 respondents
 - 177 answered "Yes" to question on whether they run long jobs
- Lincoln MATLAB users:
 - Engineers and scientists, generally not computer scientists
 - Little experience with batch queues, clusters, or mainframes
 - Solution must be easy to use


LLGrid User Requirements

- Easy to set up
 - First time user setup should be automated and take less than 10 minutes
- Easy to use
 - Using LLGrid should be the same as running a MATLAB job on user's computer
- Compatible
 - Windows, Linux, Solaris, and MacOS X
- High Availability
- High Throughput for Medium and Large Jobs

LLgrid Usage

>8 CPU hours - Infeasible on Desktop>8 CPUs - Requires On-Demand Parallel Computing

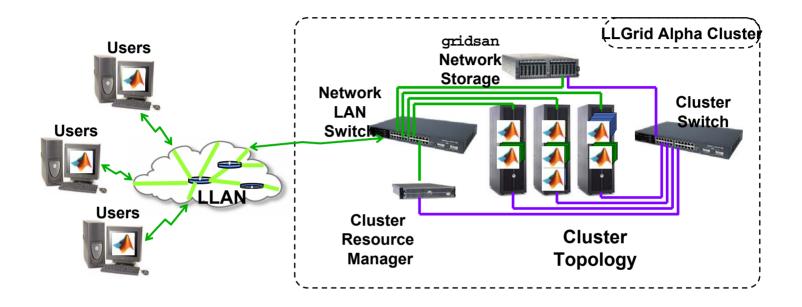
3500 jobs, 3600 CPU Days December 03 – June 04

- Allowing Lincoln staff to effectively use parallel computing daily from their desktop
 - Interactive parallel computing
 - 160 CPUs, 25 Users, 11 Groups
- Extending the current space of data analysis and simulations that Lincoln staff can perform
 - Jobs requiring rapid turnaround

App1: Weather Radar Signal Processing Algorithms

Jobs requiring many CPU hours

App2: Hyperspectral Image Analysis App3: Laser Propagation Simulation


LLGrid On-Demand Grid Computing System Agenda

- Introduction
- LLGrid System
- Performance Results
- LLGrid Productivity Analysis
- Summary

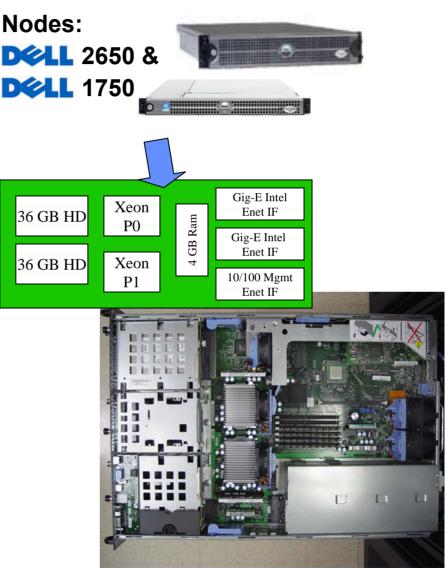
- Overview
- Hardware
- Management Scripts
- MatlabMPI
- pMatlab
- gridMatlab

LLGrid Alpha Cluster

Key Innovations:

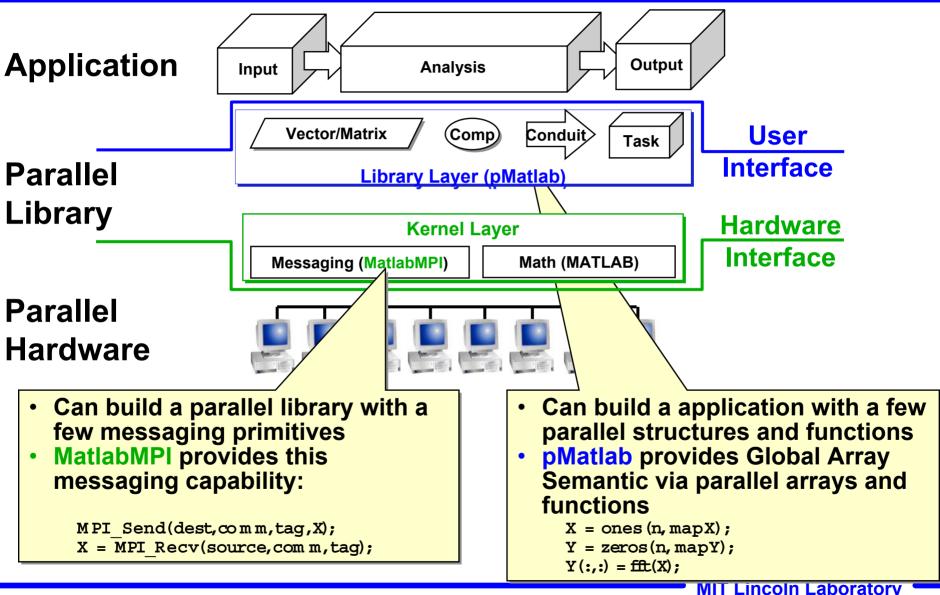
pMatlab - Global array semantics for parallel MATLAB gridMatlab - User's computer is transparently included into LLGrid - User never logs into LLGrid (only mounts file system)

MIT Lincoln Laboratory

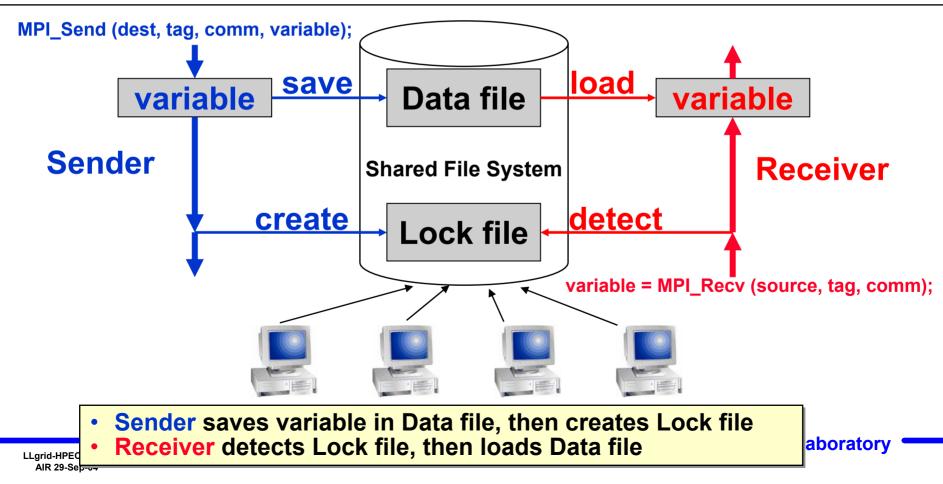

Alpha Grid Hardware

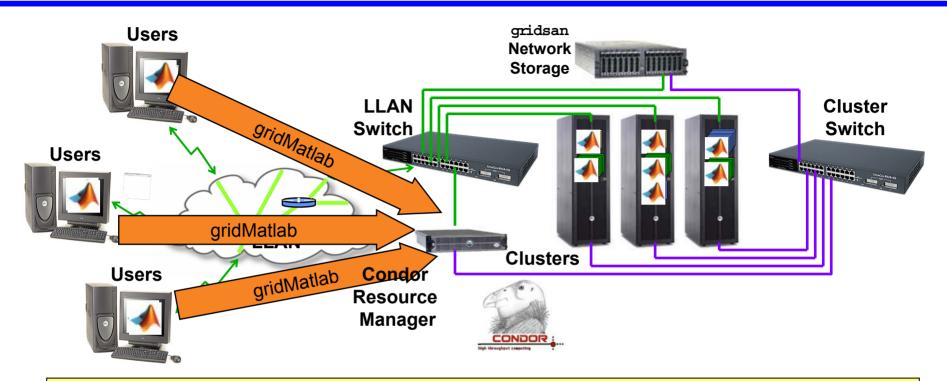
80 Nodes + Head Node - 160+2 Processors, 320 GB RAM

•Dual 2.8 & 3.06 GHz Xeon (P4)
•400 & 533 MHz front-side bus
•4 GB RAM memory
•Two 36 GB SCSI hard drives
•10/100 Mgmt Ethernet interface
•Two Gig-E Intel interfaces
•Running Red Hat Linux


•Commodity Hardware •Commodity OS •High Availablity

MIT Lincoln Laboratory


pMatlab Software Layers


MatlabMPI: Point-to-point Communication

- Any messaging system can be implemented using file I/O
- File I/O provided by MATLAB via load and save functions
 - Takes care of complicated buffer packing/unpacking problem
 - Allows basic functions to be implemented in ~250 lines of MATLAB code

gridMatlab: Enable Grid Computing

- Transparent interface between pMatlab (MatlabMPI) and resource mngr.
- User's computer is included in LLGrid for own job only
- Amasses requested resources for on-demand, interactive job computation
- Handles all communication with the Condor resource manager (including submission file, launch scripts, and job aborts)
- User never interacts with queue system directly

LLGrid Account Creation

⊖ ⊖ ⊖	LLgrid grid01head/request/ • Q+ Google	
IINCOLN LABORA	ATORY INTRANET	LLGrid Account Setup
LLgrid Account Crea	tion	•
Home	Request an Account	 Go to Account Request web page; Type Badge #, Click "Create Account"
Software • <u>MatlabMPI</u> • <u>pMatlab</u> • Grid Matlab • Standard Cluster Image	Badge #: Windows Operating System: Windows Unix Mac OS Confirm Clear	 Account is created and mounted on user's computer Get User Setup Script Run User Setup Script User runs sample job
Contact: webmaster@ll.mit.ec Last modified: October 16, 20 For Laboratory Use Only		

•	Account Creation Script (Run on LLGrid)		Creates account on gridsan	
			Creates NFS & SaMBa mount points	
		_	Creates cross-mount communication directories	
•	User Setup Script	_	Mounts gridsan	
	(Run on User's Computer)	_	Creates SSH keys for grid resource access	
		_	Links to MatlabMPI, pMatlab, & gridMatlab source toolboxes	
		—	Links to MatlabMPI, pMatlab, & gridMatlab example scripts	

Typical Supercomputing Site Setup

- Account application/ renewal [months]
- Resource discovery [hours]
- Resource allocation application/renewal [months]
- Explicit file upload/download (usually ftp) [minutes]
- Batch queue configuration [hours]
- Batch queue scripting [hours]
- Differences between control vs. compute nodes [hours]

- Secondary storage configuration [minutes]
- Secondary storage scripting [minutes]
- Interactive requesting mechanism [days]
- Debugging of example programs [days]
- Documentation system [hours]
- Machine node names [hours]
- GUI launch mechanism [minutes]
- Avoiding user contention [years]

LLGrid Account Setup [minutes]

- •Go to Account Request web page; Type Badge #, Click "Create Account"
- •Account is created and mounted on user's computer
- •Get User Setup Script
- •Run User Setup Script
- •User runs sample job

"Dear MATLAB user,

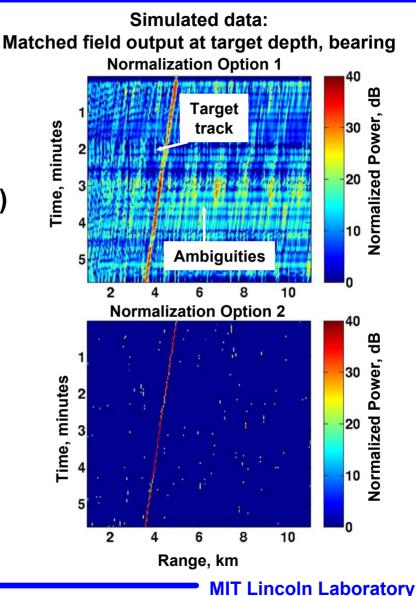
- "This is an invitation to participate in an upcoming Beta Test for the Distributed MATLAB product. This will be available on the following platforms, Win 2000, Win NT, WIN XP, and Linux.
- "The goal of this first release of Distributed MATLAB is to address the requirements of coarse-grain applications, in which the same MATLAB algorithm is executed in remote MATLAB sessions on different data sets without communication or data exchange between sessions."

– From DML beta email

Lincoln has installed DML and is testing it to determine how it integrates with LLGrid technologies.

LLGrid On-Demand Grid Computing System Agenda

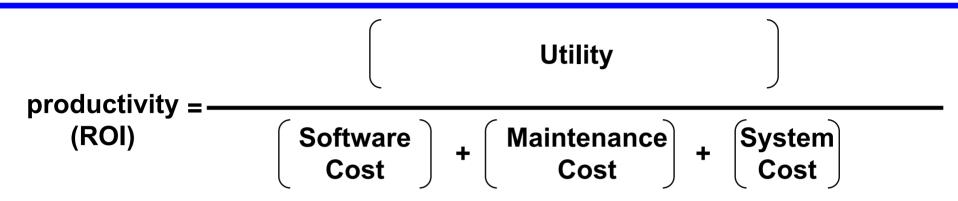
- Introduction
- LLGrid System
- Performance Results
- LLGrid Productivity Analysis
- Summary


Performance: Time to Parallelize

			Important Considerations
Description	Serial Code Time	Time to Parallelize	Applications that Parallelization Enables
Missile & Sensor BMD Sim. (BMD)	2000 hours	8 hours	Discrimination simulations Higher fidelity radar simulations
First-principles LADAR Sim. (Ladar)	1300 hours	1 hour	Speckle image simulations Aimpoint and discrimination studies
Analytic TOM Leakage Calc. (Leak)	40 hours	0.4 hours	More complete parameter space sim.
Hercules Metric TOM Code (Herc)	900 hours	0.75 hours	Monte carlo simulations
Coherent laser propagation sim. (Laser)	40 hours	1 hour	Reduce simulation run time
Polynomial coefficient approx. (Coeff)	700 hours	8 hours	Reduced run-time of algorithm training
Ground motion tracker indicator computation simulator (GMTI)	600 hours	3 hours	Reduce evaluation time of larger data sets
Automatic target recognition (ATR)	650 hours	40 hours	Ability to consider more target classes Ability to generate more scenarios
Normal Compositional Model for Hyper-spectral Image Analysis (HSI)	960 hours	6 hours	Larger datasets of images

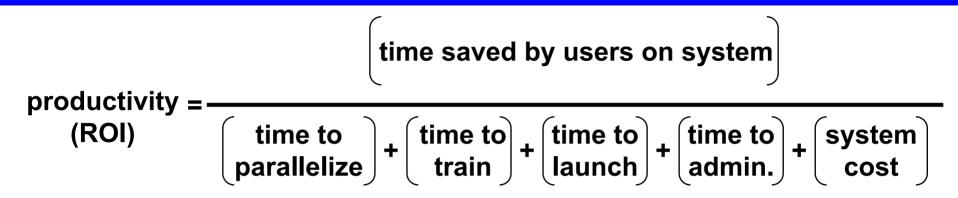
pMatlab Application to 3D Spatial Normalization

- A Lincoln group is developing normalization algorithms for 3D matched-field (MFP) beamformers
- Sponsored by DARPA-ATO under Robust Passive Sonar program
- Large search space (O(1e7) cells) makes normalizer evaluation on processed data difficult
- pMatlab code enabled rapid algorithm development and parameter selection
 - > 20x speedup by exploiting parallelism across frequency on nodes of Linux cluster
 - Development time was ~1 day



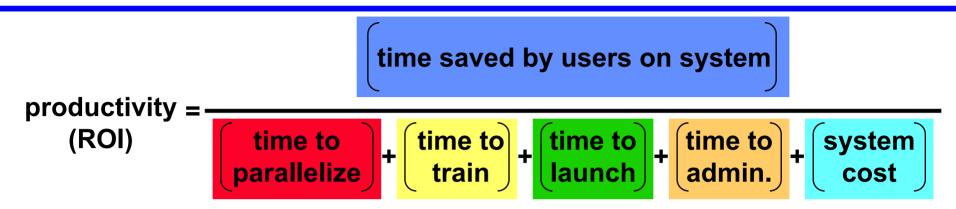
LLGrid On-Demand Grid Computing System Agenda

- Introduction
- LLGrid System
- Performance Results
- LLGrid Productivity Analysis
- Summary



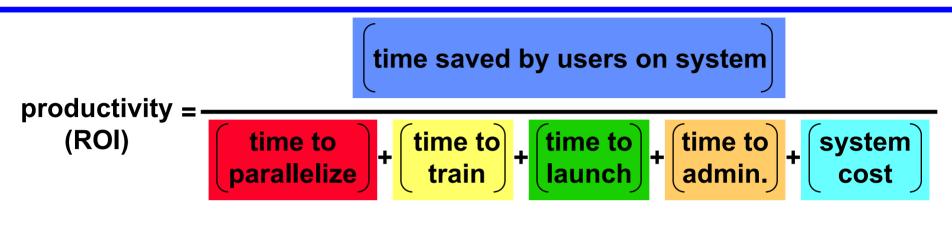
LLGrid Productivity Analysis for ROI*

MIT Lincoln Laboratory

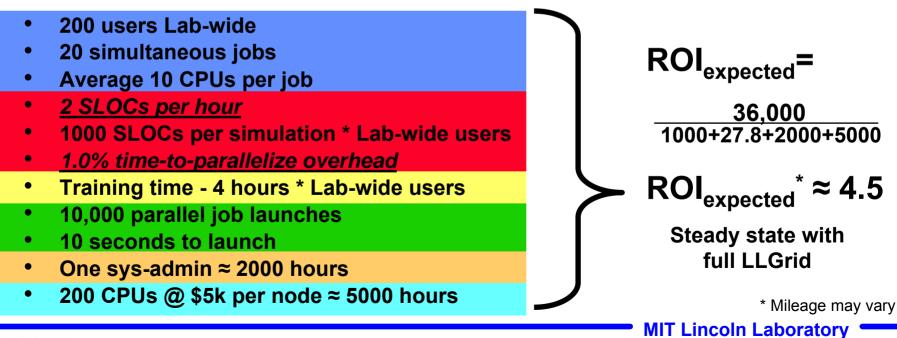


*In development in DARPA HPCS program

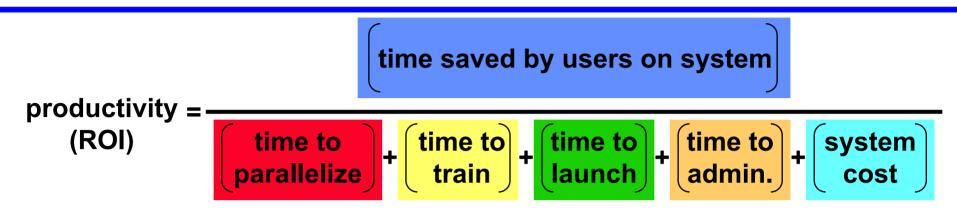
LLGrid Productivity Analysis for ROI



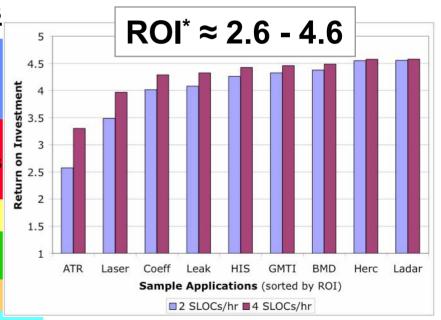
Production LLGrid model assumptions


 200 users Lab-wide 20 simultaneous jobs Average 10 CPUs per job 	(time saved) by users on system) = (User) * (Total time system is in use) * (Average users) * (1 - (Average # of CPUs per job)
 2 SLOCs per hour 1000 SLOCs per simulation * Lab-wide users 1.0% time-to-parallelize overhead 	$ \begin{pmatrix} \text{time to} \\ \text{parallelize} \end{pmatrix} = \begin{pmatrix} \text{User} \\ \text{salary} \end{pmatrix}^* \begin{pmatrix} \text{Total} \\ \# \text{ of} \\ \text{users} \end{pmatrix}^* \begin{pmatrix} \text{Prog.} \\ \text{rate} \end{pmatrix}^* \begin{pmatrix} \text{Average} \\ \text{lines of} \\ \text{code} \end{pmatrix}^* \begin{pmatrix} \frac{1}{(\text{Cost for})} - 1 \end{pmatrix} $
Training time - 4 hours * Lab-wide users	
 10,000 parallel job launches 10 seconds to launch 	time to launch =
 One sys-admin ≈ 2000 hours 	time to admin. = (Admin. salary) ∗ (Number of admins) ∗ (Admin time
 200 CPUs @ \$5k per node ≈ 5000 hours 	
	MIT Lincoln Laboratory

LLGrid Productivity Analysis for ROI



Production LLGrid model assumptions



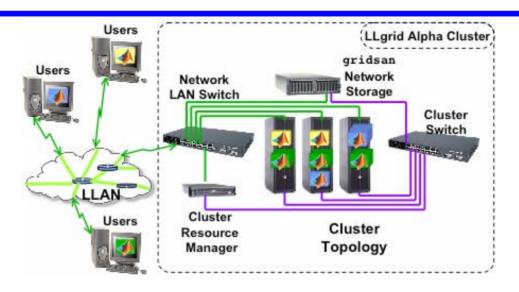
LLGrid Productivity Analysis for ROI

Production LLGrid model assumptions

- 200 users Lab-wide
- 20 simultaneous jobs
- Average 10 CPUs per job
- <u>2-4 SLOCs per hour</u>
- 1000 SLOCs per simulation * Lab-wide users
- Measured time-to-parallelize overhead
- Training time 4 hours * Lab-wide users
- 10,000 parallel job launches
- 10 seconds to launch
- One sys-admin ≈ 2000 hours
- 200 CPUs @ \$5k per node ≈ 5000 hours

* Varying Mileage

MIT Lincoln Laboratory



LLGrid On-Demand Grid Computing System Agenda

- Introduction
- LLGrid System
- Performance Results
- LLGrid Productivity Analysis
- Summary

Summary

- Easy to set up
- Easy to use
- User's computer transparently becomes part of LLGrid
- High throughput computation system
- 25 alpha users, expecting 200 users Lab-wide
- Computing jobs they could not do before
- 3600 CPU days of computer time in 8 months
- LLGrid Productivity Analysis ROI ≈ 4.5